DOI QR코드

DOI QR Code

Electrochemical Properties of Boron-doped Cathode Materials (LiNi0.90Co0.05Ti0.05O2) for Lithium-ion Batteries

붕소가 도핑된 리튬이온전지용 양극 활물질(LiNi0.90Co0.05Ti0.05O2)의 전기화학적 특성

  • Kim, Geun Joong (Department of Chemical Engineering, Chungbuk National University) ;
  • Park, Hyun Woo (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2019.07.01
  • Accepted : 2019.08.21
  • Published : 2019.12.01

Abstract

To improve the electrochemical performances of the cathode materials, boron-doped $LiNi_{0.90}Co_{0.05}Ti_{0.05}O_2$ were synthesized by using concentration gradient precursor. The characteristics of the prepared cathode materials were analyzed by XRD, SEM, EDS, PSA, ICP-OES and electrical conductivity measurement. The electrochemical performances were investigated by initial charge/discharge capacity, cycle stability, C-rate, cyclic voltammetry and electrochemical impedance spectroscopy. The cathode material with 0.5 mol% boron exhibited a capacity of 187 mAh/g (0.5 C) in a voltage range of 2.7~4.3 V(vs. $Li/Li^+$), and an capacity retention of 94.7% after 50 cycles. In the relatively high voltage range of 2.7~4.5 V(vs. $Li/Li^+$), it showed a high capacity of 200 mAh/g and capacity retention of 80.5% after 50 cycles.

양극 활물질의 전기화학적 성능을 개선하기 위하여, 농도 구배형 전구체를 사용한 boron-doped $LiNi_{0.90}Co_{0.05}Ti_{0.05}O_2$를 합성하였다. 제조된 양극 활물질의 특성은 XRD, SEM, EDS, PSA, ICP-OES 및 전기전도도 측정을 통하여 분석하였다. 초기 충 방전 용량, 사이클, 순환전압전류, 율속 특성 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. 붕소가 0.5 mol% 도핑된 $LiNi_{0.90}Co_{0.05}Ti_{0.05}O_2$ 양극 활물질은 2.7~4.3 V (vs. $Li/Li^+$)의 전압 범위에서 0.5 C의 전류를 인가했을 때, 187 mAh/g의 용량을 보이며 50 사이클 이후 94.7%의 용량 유지율을 보였다. 상대적으로 고전압인 2.7~4.5 V (vs. $Li/Li^+$)의 전압 범위에서는 200 mAh/g의 높은 용량을 보이며 50 사이클 이후 80.5%의 용량 유지율을 나타냈다.

Keywords

References

  1. Lain, M. J., "Recycling of Lithium Ion Cells and Batteries," J. Power Sources, 97-98, 736-738(2001). https://doi.org/10.1016/S0378-7753(01)00600-0
  2. Etacheri, V., Marom, R., Elazari, R., Salitra, G. and Aurbach, D., "Challenges in the Development of Advanced Li-ion Batteries : a Review," Energy Environ. Sci., 4, 3243-3262(2011). https://doi.org/10.1039/c1ee01598b
  3. Lu, Z., MacNeil, D. D. and Dahn, J. R., "Layered Cathode Materials Li[$Ni_xLi_{(1/3-2x/3)}Mn_{(2/3-x/3)}]O_2$ for Lithium-Ion Batteries," Electrochem. Solid-State Lett., 4, A191-A194(2001). https://doi.org/10.1149/1.1407994
  4. Fergus, J. W., "Recent Developments in Cathode Materials for Lithium Ion Batteries," J. Power Sources, 195, 939-954(2010). https://doi.org/10.1016/j.jpowsour.2009.08.089
  5. Liu, W., Oh, P., Liu, X., Lee, M., Cho, W., Chae, S., Kim, Y. and Cho, J., "Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries", Angew. Chem. Int. Ed., 54, 4440-4457(2015). https://doi.org/10.1002/anie.201409262
  6. Mohanty, D., Dahlberg, K. D., King, M., David, L. A., Sefat, A. S., Wood, D. L., Daniel, C., Dhar, S., Mahajan, V., Lee M. and Albano, F., "Modification of Ni-Rich FCG NMC and NCA Cathode by Atomic Layer Deposition : Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries," Scientific Reports, 6, 26532(2016). https://doi.org/10.1038/srep26532
  7. Liu, L., Sun, K., Zhang, N. and Yang, T., "Improvement of High-voltage Cycling Behavior of Li($Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ Cathodes by Mg, Cr, and Al Substitution," J. Solid State Ionics, 180, 1198-1203(2009). https://doi.org/10.1016/j.ssi.2009.05.020
  8. Ko, H. S., Kim, J. H., Wang, J. and Lee, J. D., "Co/Ti co-sub-Stituted Layered $LiNiO_2$ Prepared Using a Concentration Gradient Method as an Effective Cathode Material for Li-ion Batteries," J. Power Sources, 372, 107-115(2017). https://doi.org/10.1016/j.jpowsour.2017.10.021
  9. Park, K., Jung, H., Kuo, L., Kaghazchi, P., Yoon, C. S. and Sun, Y., "Improved Cycling Stability of Li[$Ni_{0.90}Co_{0.05}Mn_{0.05}]O_2$ Through Microstructure Modification by Boron Doping for Li-Ion Batteries," Adv. Energy Mater., 8, 1801202(2018). https://doi.org/10.1002/aenm.201801202
  10. Dou, J., Kang, X., Wumaier, T., Yu, H., Hua, N., Han, Y. and Xu, G., "Effect of Lithium Boron Oxide Glass Coating on the Electrochemical Performance of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$," J. Solid State Electrochem., 16, 1481-1486(2012). https://doi.org/10.1007/s10008-011-1550-1
  11. Liu, J., Wang, S., Ding, Z., Zhou, R., Xia, Q., Zhang, J., Chen, L., Wei, W. and Wang, P., "The Effect of Boron Doping on Structure and Electrochemical Performance of Lithium-Rich Layered Oxide Materials," ACS Appl. Mater. Interfaces, 8, 18008-18017 (2016). https://doi.org/10.1021/acsami.6b03056
  12. Kim, J., Lee, H., Cha, H., Yoon, M., Park, M. and Cho, J., "Prospect and Reality of Ni-Rich Cathode for Commercialization," Adv. Energy Mater., 8, 1702028(2018). https://doi.org/10.1002/aenm.201702028
  13. Ko, H. S., Park, H. W., Kim, G. J. and Lee, J. D., "Electrochemical Characteristics of Lithium-excess Cathode Material ($Li_{1+x}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$) for Lithium-ion Batteries," Korean J. Chem. Eng., 36, 620-624(2019). https://doi.org/10.1007/s11814-019-0248-4
  14. Ju, S. H., Jang, H. C. and Kang, Y. C., "Al-doped Ni-rich Cathode Powders Prepared from the Precursor Powders with Fine Size and Spherical Shape," Electrochim. Acta, 52, 7286-7292(2007). https://doi.org/10.1016/j.electacta.2007.05.064
  15. Liu, S., Xiong, L. and He, C., "Long Cycle Life Lithium ion Battery with Lithium Nickel Cobalt Manganese Oxide(Ncm) Cathode," J. Power Sources, 261, 285-291(2014). https://doi.org/10.1016/j.jpowsour.2014.03.083
  16. Sun, H., Choi, W., Lee, J. K., Oh, I. and Jung, H., "Control of Electrochemical Properties of Nickel-rich Layered Cathode Materials for Lithium Ion Batteries by Variation of the Manganese to Cobalt Ratio," J. Power Sources, 275, 877-883(2015). https://doi.org/10.1016/j.jpowsour.2014.11.075
  17. Ko, H. S., Park, H. W. and Lee, J. D., "The Effect of Calcination Temperature on the Layered $Li_{1.05}Ni_{0.9}Co_{0.05}T_{i0.05}O_2$ for Lithium-ion Battery," Korean Chem. Eng. Res., 56(5), 718-724(2018). https://doi.org/10.9713/kcer.2018.56.5.718
  18. Yu, Q., Chen, Z., Xing, L., Chen, D., Rong, H., Liu, Q. and Li, W., "Enhanced High Voltage Performances of Layered Lithium Nickel Cobalt Manganese Oxide Cathode by Using Trimethylboroxine as Electrolyte Additive," Electrochim. Acta, 176, 919-925 (2015). https://doi.org/10.1016/j.electacta.2015.07.058
  19. Kang, S., Kim, J., Stoll, M. E., Abraham, D., Sun, Y. K. and Amine, K., "Layered Li($Ni_{0.5-x}Mn_{0.5-x}M'_{2x})O_2$ (M' = Co, Al, Ti; x = 0, 0.025) Cathode Materials for Li-ion Rechargeable Batteries," J. Power Sources, 112, 41-48(2002). https://doi.org/10.1016/S0378-7753(02)00360-9
  20. Julien, C., Nazri, G. A. and Rougier, A., "Electrochemical Performances of Layered $LiM_{1-y}M'_yO_2$ (M = Ni, Co; M' = Mg, Al, B) Oxides in Lithium Batteries," Solid State Ionics, 135, 121-130 (2000). https://doi.org/10.1016/S0167-2738(00)00290-3
  21. Park, D., Park, D., Yu-Lan, Lim, Y. and Kim, M., "High Rate Capability of Carbonaceous Composites as Anode Electrodes for Lithium-ion Secondary Battery," J. Ind. Eng. Chem., 15, 588-594 (2009). https://doi.org/10.1016/j.jiec.2009.03.001