DOI QR코드

DOI QR Code

A Study on Thermal Decomposition Characteristics of exo-tetrahydrodicyclopentadiene with Variation of Flow Rate

유량 변화에 따른 exo-tetrahydrodicyclopentadiene의 열분해특성에 관한 연구

  • Received : 2019.07.26
  • Accepted : 2019.09.16
  • Published : 2019.12.01

Abstract

In this study, thermal decomposition characteristics of exo-tetrahydrodicyclopentadiene (exo-THDCP) composed with a single compound were analyzed by using a flow reactor. The experiments were carried out at $500^{\circ}C$, 50 bar and the products of each flow rate condition were analyzed by using a GC/MS. As a result, it was confirmed that exo-THDCP was decomposed mainly into cyclic compounds and a part was isomerized by heat. As the flow rate was increased, the kinds and ratio of compounds produced through the decomposition and isomerization were decreased. Also, the conversion rate of exo-THDCP and the amount of heat absorbed during the decomposition were also decreased. The compounds rapidly produced by decomposition were mainly formed through the radical form of 1-cyclopentylcyclopentene (1-CPCP) which is one of the intermediates that can be formed from exo-THDCP because it has the lowest activation energy of 42 kcal/mol.

본 연구에서는 흐름형 반응기를 활용하여 단일 화합물로 구성된 연료인 exo-tetrahydrodicyclopentadiene (exo-THDCP)의 유량을 변화시킴에 따라 나타나는 열분해 특성에 대해 분석하였다. 실험은 $500^{\circ}C$, 50 bar의 온도와 압력 조건에서 수행하였으며, 각 유량 조건에서 반응을 통해 생성된 물질은 GC/MS를 사용하여 분석하였다. 그 결과, exo-THDCP는 열에 의해 주로 고리형 화합물로 분해됨과 동시에 일부는 이성질화 되는 것을 확인하였다. 또한, 유량이 증가할수록 분해 및 이성질화 반응을 통해 생성되는 화합물의 종류와 비율이 감소하였으며, 이에 따라 연료의 전환율과 분해 반응 시에 발생하는 흡열량도 함께 감소하였다. 열분해 반응 시에 비교적 빠르게 생성되는 화합물은 주로 1-cyclopentylcyclopentene (1-CPCP)의 radical 형태를 중간체로 하여 형성되는 것으로 분석되었는데, 이는 exo-THDCP로부터 생성될 수 있는 중간체 중에서도 특히 1-CPCP가 생성되는 데에 필요한 활성화 에너지가 약 42 kcal/mol로 가장 낮기 때문인 것으로 해석된다.

Keywords

References

  1. Ning, W., Yu, P. and Jin, Z., "Research Status of Active Cooling of Endothermic Hydrocarbon Fueled Scramjet Engine," Journal of Aerospace Engineering, 227(11), 1780-1794(2012).
  2. Yao, Y., Zhang, J. Z. and Wang, L. P., "Film Cooling on a Gas Turbine Blade Suction Side with Converging Slot-Hole," International Journal of Thermal Sciences, 65, 267-279(2013). https://doi.org/10.1016/j.ijthermalsci.2012.10.004
  3. Foreest, A. V., Giilhan, A., Esser, B., Sippel, M., Ambrosius, B. A. C. and Sudmeijer, K., "Transpiration Cooling Using Liquid Water," Journal of Thermophysics and Heat Transfer, 23(4), 693-702(2009). https://doi.org/10.2514/1.39070
  4. Gascoin, N., Abraham, G. and Gillard, P., "Regenerative Cooling Efficiency of Several Synthetic and Jet Fuels and Preliminary Combustion-Pyrolysis Coupling," 46th AIAA Joint Propulsion Conference & Exhibit, Nashville(2010).
  5. Granata, S., Faravelli, T. and Ranzi, E., "A Wide Range Kinetic Modeling Study of the Pyrolysis and Combustion of Naphthenes," Combustion and Flame, 132, 533-544(2003). https://doi.org/10.1016/S0010-2180(02)00465-0
  6. Zeppieri, S., Brezinsky, K. and Glassman, I., "Pyrolysis Studies of Methylcyclohexane and Oxidation studies of Methylcyclohexane and Methylcyclohexane/Toluene Blends," Combustion and Flame, 108(3), 266-286(1997). https://doi.org/10.1016/S0010-2180(96)00125-3
  7. Banerjee, S., Tangko, R., Sheen, D. A., Wang, H. and Bowman, T., "An Experimental and Kinetic Modeling Study of n-Dodecane Pyrolysis and Oxidation," Combustion and Flame, 163, 12-30(2016). https://doi.org/10.1016/j.combustflame.2015.08.005
  8. Park, S. H., Kwon, C. H., Kim, J., Chun, B. H., Kang, J. W., Han, J. S., Jeong, B. H. and Kim, S. H., "Thermal Stability and Isomerization Mechanism of exo-Tetrahydrodicyclopentadiene: Experimental Study and Molecular Modeling", Ind. Eng. Chem. Res., 49, 8319-8324(2010). https://doi.org/10.1021/ie100065m
  9. Xing, Y., Fang, W., Xie, W., Guo, Y. and Lin, R., "Thermal Cracking of JP-10 under Pressure," Ind. Eng. Chem. Res., 47, 10034-10040(2008). https://doi.org/10.1021/ie801128f
  10. Gao, C. W., Vandeputte, A. G., Yee, N. W., Green, W. H., Bonomi, R. E., Magoon, G. R., Wong, H. W., Oluwole, O. O., Lewis, D. K., Vandewiele, N. M. and Van G. K. M., "JP-10 Combustion Studied with Shock Tube Experiments and Modeled with Automatic Reaction Mechanism Generation," Combustion and Flame, 162(8), 3115-3129(2015). https://doi.org/10.1016/j.combustflame.2015.02.010
  11. Olivier, H., Baptiste, S., Roda, B., Rene, F., Frederique, B. L., Gerard, S. and Marquaire, P. M., "Primary Mechanism of the Thermal Decomposition of Tricyclodecane," J. Phys. Chem. A, 110, 11298-11314(2006). https://doi.org/10.1021/jp0623802
  12. Rao, P. N. and Kunzru, D., "Thermal Cracking of JP-10: Kinetics and Product Distribution," J. Anal. Appl. Pyrolysis, 76, 154-160 (2006). https://doi.org/10.1016/j.jaap.2005.10.003
  13. Streitwieser, A. and Taft, R. W., Progress in Physical Organic Chemistry, 7th ed., John Wiley & Sons, New York, 163-167(1970).
  14. Park, S. H., Kwon, C. H., Kim, J. Y., Chun, B. H., Kang, J. W., Han, J. S., Jeong, B. H. and Kim, S. H., "Thermal Stability and Isomerization Mechanism of exo-Tetrahydrodicyclopentadiene: Experimental Study and Molecular Modeling," Ind. Eng. Chem. Res., 49, 8319-8324(2010). https://doi.org/10.1021/ie100065m
  15. http://sciencing.com/how-to-calculate-enthalpy-change-13710444.html.
  16. Chan, S. H., Ho, H. K. and Tian, Y., "Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant," Journal of Power Sources, 109(1), 111-120(2002). https://doi.org/10.1016/S0378-7753(02)00051-4