DOI QR코드

DOI QR Code

Electrospun polyamide thin film composite forward osmosis membrane: Influencing factors affecting structural parameter

  • Ghadiri, Leila (School of Chemistry, College of Science, University of Tehran) ;
  • Bozorg, Ali (Department of Biotechnology, College of Science, University of Tehran) ;
  • Shakeri, Alireza (School of Chemistry, College of Science, University of Tehran)
  • 투고 : 2018.09.22
  • 심사 : 2019.08.16
  • 발행 : 2019.11.25

초록

Poly Sulfone nanofibers were electrospun to fabricate membranes of different characteristics. To fabricate the fiber mats, polymer concentration, flowrate, and current density were determined as the most influencing factors affecting the overall performance of the membranes and studied through Response Surface Methodology. The Box-Behnken Design method (three factors at three levels) was used to design, analyze, and optimize the parameters to achieve the best possible performance of the electrospun membranes in forward osmosis process. Also, internal concentration polarization that characterizes the efficiency of the forward osmosis membranes was determined to better assess the overall performance of the fabricated electrospun membranes. Water flux to reverse salt flux was considered as the main response to assess the performance of the membranes. As confirmed experimentally, best membrane performance with the minimal structural parameter value could be achieved when predicted optimal values were used to fabricate the membranes through electrospinning process.

키워드

참고문헌

  1. Alsvik, I.L. and Hagg, M.B. (2013), "Pressure retarded osmosis and forward osmosis membranes: Materials and methods", Polymers (Basel), 5, 303-327. https://doi.org/10.3390/polym5010303
  2. Altaee, A. and Sharif, A. (2015), "Pressure retarded osmosis:advancement in the process applications for power generation and desalination", Desalination, 356, 31-46. https://doi.org/10.1016/j.desal.2014.09.028
  3. Barhate, R.S., Loong, C.K. and Ramakrishna, S. (2006), "Preparation and characterization of nanofibrous filtering media", J. Memb. Sci., 283, 209-218. https://doi.org/10.1016/J.MEMSCI.2006.06.030
  4. Bjorge, D., Daels, N., De Vrieze, S., Dejans, P., Van Camp, T., Audenaert, W., Hogie, J., Westbroek, P., De Clerck, K. and Van Hulle, S.W.H. (2009), "Performance assessment of electrospun nanofibers for filter applications", Desalination, 249, 942-948. https://doi.org/10.1016/J.DESAL.2009.06.064
  5. Bui, Nhu-ngoc and McCutcheon, R. (2013), "Hydrophilic Nano fibers as New Supports for Thin Film Composite Membranes for Engineered Osmosis", Environ. Sci. Technol., 47, 1761-1769. https://doi.org/10.1021/es304215g
  6. Bui, N., Laura, M., Hoek, E.M.V. and Mccutcheon, J.R. (2011), "Electrospun nanofiber supported thin film composite membranes for engineered osmosis", J. Memb. Sci., 385-386, 10-19. https://doi.org/10.1016/j.memsci.2011.08.002.
  7. Bui, N.N., McCutcheon, J.R. (2014), "Nanofiber supported thinfilm composite membrane for pressure-retarded osmosis", Environ. Sci. Technol., 48, 4129-4136. https://doi.org/10.1021/es4037012
  8. Cojocaru, C., Pascariu, P., Airinei, A., Olaru, N., Samoila, P., Rotaru, A. (2017), "Design and evaluation of electrospun polysulfone fibers and polysulfone/NiFe2O4 nanostructured composite as sorbents for oil spill cleanup", J. Taiwan Inst. Chem. Eng., 70, 267-281. https://doi.org/10.1016/j.jtice.2016.11.005.
  9. Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandao, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S. and dos Santos, W.N.L. (2007), "Box-Behnken design: An alternative for the optimization of analytical methods", Anal. Chim. Acta, 597,179-186. https://doi.org/10.1016/j.aca.2007.07.011
  10. Ge, Q., Ling, M. and Chung, T. (2013), "Draw solutions for forward osmosis processes: Developments, challenges and prospects for the future", J. Memb. Sci. 442, 225-237. https://doi.org/10.1016/j.memsci.2013.03.046
  11. Gonen, S.O., Erol Taygun, M. and Kucukbayrak, S. (2016), "Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via Box-Behnken design", Mater. Sci. Eng. C, 58, 709-723. https://doi.org/10.1016/j.msec.2015.09.024
  12. Hoover, L.A., Schiffman, J.D. and Elimelech, M. (2013), "Nanofibers in thin-film composite membrane support layers:Enabling expanded application of forward and pressure retarded osmosis", Desalination, 308, 73-81. https://doi.org/10.1016/J.DESAL.2012.07.019
  13. Huang, L., Bui, N., Meyering, M.T., Hamlin, T.J. and Mccutcheon, J.R. (2013), "Novel hydrophilic nylon 6, 6 microfiltration membrane supported thin film composite membranes for engineered osmosis", J. Memb. Sci., 437, 141-149. https://doi.org/10.1016/j.memsci.2013.01.046
  14. Khataee, A.R., Zarei, M. and Moradkhannejhad, L. (2010), "Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode", Desalination, 258, 112-119. https://doi.org/10.1016/j.desal.2010.03.028
  15. Kim, D.Y., Oh, Y.K., Park, J.Y., Kim, B., Choi, S.A. and Han, J.I. (2015), "An integrated process for microalgae harvesting and cell disruption by the use of ferric ions", Bioresour. Technol., 191, 469-474. https://doi.org/10.1016/j.biortech.2015.03.020
  16. Klaysom, C., Cath, T.Y., Depuydt, T. and Vankelecom, I.F.J. (2013), "Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply", Chem. Soc. Rev., 42, 6959. https://doi.org/10.1039/c3cs60051c.
  17. Li, G., Li, P., Yu, Y., Jia, X., Zhang, S., Yang, X. and Ryu, S. (2008), "Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers", 62, 511-514. https://doi.org/10.1016/j.matlet.2007.05.080
  18. Li, W., Gao, Y. and Tang, C.Y. (2011), "Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with FEM", J. Memb. Sci., 379, 307-321. https://doi.org/10.1016/j.memsci.2011.05.074
  19. Liu, Q., Li, J., Zhou, Z., Qiu, G., Xie, J. and Lee, J.Y., (2016), "Dual-Functional Coating of Forward Osmosis Membranes for Hydrophilization and Antimicrobial Resistance", Adv. Mater. Interfaces, 3, 1-8. https://doi.org/10.1002/admi.201500599.
  20. Liu, Q., Zhou, Z., Qiu, G., Li, J., Xie, J. and Lee, J.Y. (2015), "Surface Reaction Route To Increase the Loading of Antimicrobial Ag Nanoparticles in Forward Osmosis Membranes", ACS Sustain. Chem. Eng., 3, 2959-2966. https://doi.org/10.1021/acssuschemeng.5b00931.
  21. Liu, X. and Ng, H.Y. (2015), "Fabrication of layered silica-polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane", J. Memb. Sci., 481, 148-163. https://doi.org/10.1016/j.memsci.2015.02.012
  22. Loeb, S., Titelman, L., Korngold, E. and Freiman, J. (1997), "Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane", J. Memb. Sci., 129, 243-249. https://doi.org/10.1016/S0376-7388(96)00354-7
  23. Lutchmiah, K., Verliefde, A.R.D., Roest, K. and Rietveld, L.C. (2014), "ScienceDirect Forward osmosis for application in wastewater treatment: A review", Water Res., 58, 179-197. https://doi.org/10.1016/j.watres.2014.03.045
  24. Mourabet, M., El Rhilassi, A., Bennani-Ziatni, M. and Taitai, A. (2014), "Comparative Study of Artificial Neural Network and Response Surface Methodology for Modelling and Optimization the Adsorption Capacity of Fluoride onto Apatitic Tricalcium Phosphate", Univers. J. Appl. Math., 2, 84-91. https://doi.org/10.13189/ujam.2014.020202
  25. McCutcheon, J.R. and Elimelech, M. (2008), "Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes", J. Memb. Sci., 318, 458-466. https://doi.org/10.1016/j.memsci.2008.03.021
  26. McCutcheon, J.R. and Elimelech, M. (2006), "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis", J. Memb. Sci., 284, 237-247. https://doi.org/10.1016/j.memsci.2006.07.049
  27. Montgomery, M.A. and Elimelech, M. (2007), "Water and sanitation in developing countries: Including health in the equation - Millions suffer from preventable illnesses and die every year", Environ. Sci. Technol., 41, 17-24. https://doi.org/10.1021/es072435t
  28. Muscatello, J., Muller, E.A., Mostofi, A.A. and Sutton, A.P. (2017), "Multiscale molecular simulations of the formation and structure of polyamide membranes created by interfacial polymerization", J. Memb. Sci., 527, 180-190. https://doi.org/10.1016/j.memsci.2016.11.024
  29. Nam, S.N., Cho, H., Han, J., Her, N. and Yoon, J. (2018), "Photocatalytic degradation of acesulfame K: Optimization using the Box-Behnken design (BBD)", Process Saf. Environ. Prot., 113, 10-21. https://doi.org/10.1016/j.psep.2017.09.002.
  30. Obaid, M., Ghouri, Z.K., Fadali, O.A., Khalil, K.A., Almajid, A.A. and Barakat, N.A.M. (2016a), "Amorphous SiO2 NPIncorporated Poly(vinylidene fluoride) Electrospun Nanofiber Membrane for High Flux Forward Osmosis Desalination", ACS Appl. Mater. Interfaces, 8, 4561-4574. https://doi.org/10.1021/acsami.5b09945
  31. Obaid, M., Mohamed, H.O., Yasin, A.S., Fadali, O.A., Khalil, K.A., Kim, T. and Barakat, N.A.M. (2016b), "A novel strategy for enhancing the electrospun PVDF support layer of thin-film composite forward osmosis membranes", RSC Adv. 6, 102762-102772. https://doi.org/10.1039/C6RA18153H.
  32. Park, M.J., Gonzales, R.R., Abdel-Wahab, A., Phuntsho, S. and Shon, H.K. (2018), "Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane", Desalination, 426, 50-59. https://doi.org/10.1016/j.desal.2017.10.042
  33. Pascariu-dorneanu, P., Airinei, A., Olaru, N., Fifere, N., Doroftei, C. and Iacomi, F. (2017), "Preparation and characterization of some electrospun polysulfone nanocomposites reinforced with Ni doped SnO 2 nanoparticles", Eur. Polym. J., 91, 326-336. https://doi.org/10.1016/j.eurpolymj.2017.04.004
  34. Rastgar, M., Bozorg, A. and Shakeri, A. (2018), "Novel Dimensionally Controlled Nanopore Forming Template in Forward Osmosis Membranes", Environ. Sci. Technol. acs.est.7b05583. https://doi.org/10.1021/acs.est.7b05583.
  35. Rastgar, M., Shakeri, A., Bozorg, A., Salehi, H. and Saadattalab, V. (2017), "Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes", Desalination, 1-11. https://doi.org/10.1016/j.desal.2017.01.040.
  36. Salehi, H., Rastgar, M. and Shakeri, A. (2017a), "Anti-Fouling and High Water Permeable Forward Osmosis Membrane Fabricated via Layer by Layer Assembly of Chitosan/Graphene Oxide", Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2017.03.271.
  37. Salehi, H., Shakeri, A. and Rastgar, M. (2017b), "Carboxylic polyethersulfone: A novel pH-responsive modifier in support layer of forward osmosis membrane", J. Memb. Sci., https://doi.org/10.1016/j.memsci.2017.10.044.
  38. Shanmugaprakash, M. and Sivakumar, V. (2013), "Development of experimental design approach and ANN-based models for determination of Cr(VI) ions uptake rate from aqueous solution onto the solid biodiesel waste residue", Bioresour. Technol., 148, 550-559. https://doi.org/10.1016/j.biortech.2013.08.149.
  39. Shannon, M., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008), "Science and technology for water purification in the coming decades", Nature, 452, 301-310. https://doi.org/10.1038/nature06599
  40. She, Q., Wang, R., Fane, A.G. and Tang, C.Y. (2016), "Membrane fouling in osmotically driven membrane processes: A review". J. Memb. Sci., 499, 201-233. https://doi.org/10.1016/j.memsci.2015.10.040.
  41. Song, X., Liu, Z. and Sun, D.D. (2011), "Nano gives the answer:Breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate", Adv. Mater., 23, 3256-3260. https://doi.org/10.1002/adma.201100510
  42. Sudeeptha, G. and Arun Kumar Thalla. (2017), "Ranking and comparison of draw solutes in a forward osmosis process", Membr. Water Treat., 8, 411-421. https://doi.org/10.12989/mwt.2017.8.5.411.
  43. Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2011), "Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure". J. Memb. Sci., 367, 340-352. https://doi.org/10.1016/j.memsci.2010.11.014
  44. Vatanpour, V., Sheydaei, M. and Esmaeili, M. (2017a), "Box-Behnken design as a systematic approach to inspect correlation between synthesis conditions and desalination performance of TFC RO membranes", Desalination, 420, 1-11. https://doi.org/10.1016/j.desal.2017.06.022
  45. Vatanpour, V., Sheydaei, M. and Esmaeili, M. (2017b), "Box-Behnken design as a systematic approach to inspect correlation between synthesis conditions and desalination performance of TFC RO membranes", Desalination, 420, 1-11. https://doi.org/10.1016/j.desal.2017.06.022
  46. Wang, R., Liu, Y., Li, B., Hsiao, B.S. and Chu, B. (2012), "Electrospun nanofibrous membranes for high flux microfiltration", J. Memb. Sci., 392-393, 167-174. https://doi.org/10.1016/j.memsci.2011.12.019
  47. Wang, R., Shi, L., Tang, C.Y., Chou, S., Qiu, C. and Fane, A.G. (2010), "Characterization of novel forward osmosis hollow fiber membranes", J. Memb. Sci., 355, 158-167. https://doi.org/10.1016/j.memsci.2010.03.017.
  48. Wendorff, J.H., Agarwal, S. and Greiner, A. (2012), Electrospinning: Materials, Processing, and Applications, Electrospinning: Materials, Processing, and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/9783527647705.
  49. Werber, J.R., Osuji, C.O. and Elimelech, M. (2016), "Materials for next-generation desalination and water purification membranes", Nat. Rev. Mater., 1, 16018. https://doi.org/10.1038/natrevmats.2016.18.
  50. Wong, M.C.Y., Martinez, K., Ramon, G.Z. and Hoek, E.M.V. (2012), "Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance", Desalination, 287, 340-349. https://doi.org/10.1016/j.desal.2011.10.013.
  51. Xu, Y., Peng, X., Tang, C.Y., Fu, Q.S. and Nie, S. (2010), "Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module", J. Memb. Sci., 348, 298-309. https://doi.org/10.1016/j.memsci.2009.11.013.
  52. Yoon, K., Hsiao, B.S. and Chu, B. (2009), "High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating", J. Memb. Sci., 338, 145-152. https://doi.org/10.1016/j.memsci.2009.04.020.

피인용 문헌

  1. Monosodium glutamate as a draw solute for sewage thickening by forward osmosis-nanofiltration vol.12, pp.4, 2021, https://doi.org/10.12989/mwt.2021.12.4.165