DOI QR코드

DOI QR Code

Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes

  • Jeong, Dawoon (Institute of Environmental Research, Kangwon National University) ;
  • Lee, Chang-Ha (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Seockheon (Center for Water Resource Cycle Research, Korea Institute of Science and Technology) ;
  • Bae, Hyokwan (Department of Civil and Environmental Engineering, Pusan National University)
  • Received : 2019.02.25
  • Accepted : 2019.07.22
  • Published : 2019.11.25

Abstract

The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with $0.2mg-Cl_2/L$ chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorine-resistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg $Cl_2/L$). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.

Keywords

Acknowledgement

Supported by : Korea Institute of Science and Technology, Ministry of Land, Infrastructure, and Transport, National Research Foundation of Korea (NRF)

References

  1. Bae, H., Jeong, D., Kim, H., Kim, S. and Lee, S. (2014), "Dynamic shift in community structures of biofilm-forming bacteria by the pre-treatment systems of seawater reverse osmosis processes", Desalination, 343, 17-25. https://doi.org/10.1016/j.desal.2013.12.020
  2. Bertelli, C., Courtois, S., Rosikiewicz, M., Piriou, P., Aeby, S., Robert, S., Loret, J.F. and Greub, G. (2018), "Reduced chlorine in drinking water distribution systems impacts bacterial biodiversity in biofilms", Fronti. Microbiol., 9, 2520. https://doi.org/10.3389/fmicb.2018.02520
  3. Brehant, A., Bonnelye, V. and Perez, M. (2002), "Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination", Desalination, 144, 353-360. https://doi.org/10.1016/S0011-9164(02)00343-0
  4. Bridier, A., Briandet, R., Thomas, V. and Dubois-Brissonnet, F. (2011), "Resistance of bacterial biofilms to disinfectants: a review", Biofouling, 27, 1017-1032. https://doi.org/10.1080/08927014.2011.626899
  5. Cho, K., Jeong, D., Lee, S. and Bae, H. (2018), "Chlorination caused a shift in marine biofilm niches on microfiltration/ultrafiltration and reverse osmosis membranes and UV irradiation effectively inactivated a chlorine-resistant bacterium", Appl. Microbiol. and Biotechnol., 102, 7183-7194. https://doi.org/10.1007/s00253-018-9111-5
  6. Chun, Y., Ha, P.T., Powell, L., Lee, J., Kim, D., Choi, D., Lovitt, R.W., Kim, I.S., Mitra, S.S. and Chang, I.S. (2012), "Exploring microbial communities and differences of cartridge filters (CFs) and reverse osmosis (RO) membranes for seawater desalination processes", Desalination, 298, 85-92. https://doi.org/10.1016/j.desal.2012.05.007
  7. Codony, F., Morato, J. and Mas, J. (2005), "Role of discontinuous chlorination on microbial production by drinking water biofilms", Water Res., 39, 1896-1906. https://doi.org/10.1016/j.watres.2005.02.016
  8. Donlan, R.M. (2002), "Biofilms: microbial life on surfaces", Emerging Infect. Dis., 8, 881. https://doi.org/10.3201/eid0809.020063
  9. Egert, M. and Friedrich, M.W. (2003), "Formation of pseudoterminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure", Appl. Environ. Microbiol., 69, 2555-2562. https://doi.org/10.1128/AEM.69.5.2555-2562.2003
  10. Escobar, I.C., Randall, A.A. and Taylor, J.S. (2001), "Bacterial growth in distribution systems: effect of assimilable organic carbon and biodegradable dissolved organic carbon", Environ. Sci. Technol., 35, 3442-3447. https://doi.org/10.1021/es0106669
  11. Frolund, B., Palmgren, R., Keiding, K. and Nielsen, P.H. (1996), "Extraction of extracellular polymers from activated sludge using a cation exchange resin", Water Res., 30, 1749-1758. https://doi.org/10.1016/0043-1354(95)00323-1
  12. Fujiwara, N. and Matsuyama, H. (2008), "Elimination of biological fouling in seawater reverse osmosis desalination plants", Desalination, 227, 295-305. https://doi.org/10.1016/j.desal.2007.06.033
  13. Herzberg, M., Kang, S. and Elimelech, M. (2009), "Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes", Environ. Sci. Technol., 43, 4393-4398. https://doi.org/10.1021/es900087j
  14. Jang, A., Szabo, J., Hosni, A.A., Coughlin, M. and Bishop, P.L. (2006), "Measurement of chlorine dioxide penetration in dairy process pipe biofilms during disinfection", Appl. Microbiol. Biotechnol., 72, 368-376. https://doi.org/10.1007/s00253-005-0274-5
  15. Jeong, S. and Vigneswaran, S. (2013), "Assessment of biological activity in contact flocculation filtration used as a pretreatment in seawater desalination", Chem. Eng. J., 228, 976-983. https://doi.org/10.1016/j.cej.2013.05.085
  16. Jeong, S., Cho, K., Jeong, D., Lee, S., Leiknes, T., Vigneswaran, S. and Bae, H. (2017), "Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane", Water Res., 124, 227-237. https://doi.org/10.1016/j.watres.2017.07.064
  17. Jia, S., Shi, P., Hu, Q., Li, B., Zhang, T. and Zhang, X.X. (2015), "Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination", Environ. Sci. Technol., 49, 12271-12279. https://doi.org/10.1021/acs.est.5b03521
  18. Kadouri, D., Venzon, N.C. and O'Toole, G.A. (2007), "Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus", Appl. Environ. Microbiol., 73, 605-614. https://doi.org/10.1128/AEM.01893-06
  19. Lau, W.J., Goh, P.S., Ismail, A.F. and Lai, S.O. (2014), "Ultrafiltration as a pretreatment for seawater desalination: A review", Membr. Water Treat., 5(1),15-29. https://doi.org/10.12989/mwt.2014.5.1.015
  20. LeChevallier, M.W., Welch, N.J. and Smith, D.B. (1996), "Fullscale studies of factors related to coliform regrowth in drinking water", Appl. Environ. Microbiol., 62, 2201-2211. https://doi.org/10.1128/aem.62.7.2201-2211.1996
  21. Lee, J., Jung, J.Y., Kim, S, Chang, I.S., Mitra, S.S. and Kim, I.S. (2009), "Selection of the most problematic biofoulant in fouled RO membrane and the seawater intake to develop biosensors for membrane biofouling", Desalination, 247, 125-136. https://doi.org/10.1016/j.desal.2008.12.018
  22. Leriche, V. and Carpentier, B. (1995), "Viable but nonculturable Salmonella typhimurium in single-and binary-species biofilms in response to chlorine treatment", J. Food Prot., 58, 1186-1191. https://doi.org/10.4315/0362-028X-58.11.1186
  23. Matin, A., Khan, Z., Zaidi, S. and Boyce, M. (2011), "Biofouling in reverse osmosis membranes for seawater desalination:phenomena and prevention", Desalination, 281, 1-16. https://doi.org/10.1016/j.desal.2011.06.063
  24. Mathieu, L., Bouteleux, C., Fass, S., Angel, E. and Block, J.C. (2009), "Reversible shift in the ${\alpha}$-, ${\beta}$- and ${\gamma}$-proteobacteria populations of drinking water biofilms during discontinuous chlorination", Water Res., 43, 3375-3386. https://doi.org/10.1016/j.watres.2009.05.005
  25. Miller, H.C., Wylie, J., Dejean, G., Kaksonen, A.H., Sutton, D., Braun, K. and Uzon, G.J. (2015), "Reduced efficiency of chlorine disinfection of Naegleria fowleri in a drinking water distribution biofilm", Environ. Sci. Technol., 49, 11125-11131. https://doi.org/10.1021/acs.est.5b02947
  26. Ndiongue, S., Huck, P. and Slawson, R. (2005), "Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system", Water Res., 39, 953-964. https://doi.org/10.1016/j.watres.2004.12.019
  27. Payment, P. (1999), "Poor efficacy of residual chlorine disinfectant in drinking water to inactivate waterborne pathogens in distribution systems", Canadian J. Microbiol., 45, 709-715. https://doi.org/10.1139/w99-063
  28. Servais, P., Laurent, P. and Randon, G. (1995), "Comparison of the bacterial dynamics in various French distribution systems", Aqua-London Then Oxford J. Water Supply Assoc., 44, 10-10.
  29. Simoes, L.C., Simoes, M. and Vieira, M.J. (2010), "Influence of the diversity of bacterial isolates from drinking water on resistance of biofilms to disinfection", Appl. Environ. Microbiol., 76, 6673-6679. https://doi.org/10.1128/AEM.00872-10
  30. Van der Wende, E., Characklis, W.G. and Smith, D. (1989), "Biofilms and bacterial drinking water quality", Water Res., 23, 1313-1322. https://doi.org/10.1016/0043-1354(89)90193-0
  31. Vandecandelaere, I., Segaert, E., Mollica, A., Faimali, M. and Vandamme, P. (2009), "Phaeobacter caeruleus sp. nov., a bluecoloured, colony-forming bacterium isolated from a marine electroactive biofilm", Int. J. Syst. Evol. Microbiol., 59, 1209-1214. https://doi.org/10.1099/ijs.0.002642-0
  32. Vanysacker, L., Boerjan, B., Declerck, P. and Vankelecom, I.F.J. (2014), "Biofouling ecology as a means to better understand membrane biofouling", Appl. Microbiol. Biotechnol., 98, 8047-8072. https://doi.org/10.1007/s00253-014-5921-2
  33. Voutchkov, N. (2010), "Considerations for selection of seawater filtration pretreatment system", Desalination, 261, 354-364. https://doi.org/10.1016/j.desal.2010.07.002
  34. Wang, H., Masters, S., Edwards, M.A., Falkinham, III J.O. and Pruden, A. (2014), "Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm", Environ. Sci. Technol., 48, 1426-1435. https://doi.org/10.1021/es402636u
  35. Williams, M.M., Domingo, J.W., Meckes, M.C., Kelty, C.A. and Rochon, H.S. (2004), "Phylogenetic diversity of drinking water bacteria in a distribution system simulator", J. Appl. Microbiol., 96, 954-964. https://doi.org/10.1111/j.1365-2672.2004.02229.x
  36. Williams, T.J., Lefevre, C.T., Zhao, W., Beveridge, T.J. and Bazylinski, D.A. (2012), "Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria)", Int. J. Syst. Evol. Microbiol., 62, 2443-2450. https://doi.org/10.1099/ijs.0.037697-0

Cited by

  1. Modeling of biofilm growth and the related changes in hydraulic properties of porous media vol.12, pp.5, 2019, https://doi.org/10.12989/mwt.2021.12.5.217