DOI QR코드

DOI QR Code

Development of 3D Meso-Scale finite element model to study the mechanical behavior of steel microfiber-reinforced polymer concrete

  • Esmaeili, J. (Department of Civil Engineering, University of Tabriz) ;
  • Andalibia, K. (Department of Civil Engineering, University of Tabriz)
  • 투고 : 2019.01.20
  • 심사 : 2019.10.05
  • 발행 : 2019.11.25

초록

In this study, 3D Meso-scale finite-element model is presented to study the mechanical behavior of steel microfiber-reinforced polymer concrete considering the random distribution of fibers in the matrix. The composite comprises two separate parts which are the polymer composite and steel microfibers. The polymer composite is assumed to be homogeneous, which its mechanical properties are measured by performing experimental tests. The steel microfiber-polymer bonding is simulated with the Cohesive Zone Model (CZM) to offer more-realistic assumptions. The CZM parameters are obtained by calibrating the numerical model using the results of the experimental pullout tests on an individual microfiber. The accuracy of the results is validated by comparing the obtained results with the corresponding values attained from testing the steel microfiber-reinforced polymer concrete incorporating 0, 1 and 2% by volume of microfibers, which indicates the excellent accuracy of the current proposed model. The results show that the microfiber aspect ratio has a considerable effect on the mechanical properties of the reinforced polymer concrete. Applying microfibers with a higher aspect ratio improves the mechanical properties of the composite considerably especially when the first crack appears in the polymer concrete specimens.

키워드

참고문헌

  1. Abdel-Fattah, H. and El-Hawary, M.M. (1999), "Flexural behavior of polymer concrete", Constr. Build. Mater., 13(5), 253-262. https://doi.org/10.1016/S0950-0618(99)00030-6.
  2. Aslani, F. and Nejadi, S. (2012), "Bond characteristics of steel fibre reinforced self-compacting concrete", Can. J. Civil Eng., 39(7), 834-848. https://doi.org/10.1139/l2012-069.
  3. Ayatollahi, M., Shadlou, S. and Shokrieh, M. (2011), "Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading", Compos. Struct., 93(9), 2250-2259. https://doi.org/10.1016/j.compstruct.2011.03.013.
  4. Bouhala, L., Makradi, A., Belouettar, S., Younes, A. and Natarajan, S. (2015), "An XFEM/CZM based inverse method for identification of composite failure parameters", Comput. Struct., 153, 91-97. https://doi.org/10.1016/j.compstruc.2015.02.035.
  5. Budhe, S., Banea, M., De Barros, S. and Da Silva, L. (2017), "An updated review of adhesively bonded joints in composite materials", Int. J. Adhes. Adhes., 72, 30-42. https://doi.org/10.1016/j.ijadhadh.2016.10.010.
  6. Du, C., Jiang, S., Qin, W., Xu, H. and Lei, D. (2012), "Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale", Comput. Concrete, 10(2), 135-147. https://doi.org/10.12989/cac.2012.10.2.135.
  7. Gencel, O., Brostow, W., Martinez-Barrera, G. and Gok, M.S. (2012), "Mechanical properties of polymer concretes containing different amount of hematite or colemanite", Polim., 57(4).
  8. Hassani Niaki, M., Fereidoon, A. and Ghorbanzadeh Ahangari, M. (2018), "Mechanical properties of epoxy/basalt polymer concrete: Experimental and analytical study", Struct. Concrete, 19(2), 366-373. https://doi.org/10.1002/suco.201700003.
  9. Isla, F., Ruano, G. and Luccioni, B. (2015), "Analysis of steel fibers pullout. Experimental study", Constr. Build. Mater., 100, 183-193. https://doi.org/10.1016/j.conbuildmat.2015.09.034.
  10. Jafari, K., Tabatabaeian, M., Joshaghani, A. and Ozbakkaloglu, T. (2018), "Optimizing the mixture design of polymer concrete: An experimental investigation", Constr. Build. Mater., 167, 185-196. https://doi.org/10.1016/j.conbuildmat.2018.01.191.
  11. Karimzadeh, F., Ziaei-Rad, S. and Adibi, S. (2007), "Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite", Metal. Mater. Tran. B, 38(4), 695-705. https://doi.org/10.1007/s11663-007-9065-y.
  12. Khani, N., Yildiz, M. and Koc, B. (2016), "Elastic properties of coiled carbon nanotube reinforced nanocomposite: a finite element study", Mater. Des., 109, 123-132. https://doi.org/10.1016/j.matdes.2016.06.126.
  13. Martínez-Barrera, G., Menchaca-Campos, C. and Gencel, O. (2013), "Polyester polymer concrete: Effect of the marble particle sizes and high gamma radiation doses", Constr. Build. Mater., 41, 204-208. https://doi.org/10.1016/j.conbuildmat.2012.12.009.
  14. Martinez-Barrera, G., Vigueras-Santiago, E., Gencel, O. and Hagg Lobland, H.E. (2011), "Polymer concretes: a description and methods for modification and improvement", J. Mater. Educat., 33(1), 37.
  15. Moodi, F., Kashi, A., Ramezanianpour, A.A. and Pourebrahimi, M. (2018), "Investigation on mechanical and durability properties of polymer and latex-modified concretes", Constr. Build. Mater., 191, 145-154. https://doi.org/10.1016/j.conbuildmat.2018.09.198.
  16. Paris, F., Correa, E. and Mantic, V. (2017), "Micromechanical evidences on interfibre failure of composites", Structural Integrity of Carbon Fiber Composites, Springer, 359-390.
  17. Rebeiz, K., Serhal, S.and Craft, A. (2004), "Properties of polymer concrete using fly ash", J. Mater. Civil Eng., 16(1), 15-19. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(15).
  18. Reis, J. (2006), "Fracture and flexural characterization of natural fiber-reinforced polymer concrete", Constr. Build. Mater., 20(9), 673-678. https://doi.org/10.1016/j.conbuildmat.2005.02.008.
  19. Reis, J. and Ferreira, A. (2004), "Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers", Constr. Build. Mater., 18(7), 523-528. https://doi.org/10.1016/j.conbuildmat.2004.04.010.
  20. Sett, K. and Vipulanandan, C. (2004), "Properties of polyester polymer concrete with glass and carbon fibers", Mater. J., 101(1), 30-41.
  21. Shannag, M.J., Brincker, R. and Hansen, W. (1997), "Pullout behavior of steel fibers from cement-based composites", Cement Concrete Res., 27(6), 925-936. https://doi.org/10.1016/S0008-8846(97)00061-6.
  22. Shokrieh, M., Rezvani, S. and Mosalmani, R. (2017), "Mechanical behavior of polyester polymer concrete under low strain rate loading conditions", Polym. Test., 63, 596-604. https://doi.org/10.1016/j.polymertesting.2017.09.015.
  23. Smolcic, Z. and Ozbolt, J. (2017), "Meso scale model for fiberreinforced-concrete: Microplane based approach", Comput. Concrete, 17(4), 375-385. https://doi.org/10.12989/cac.2017.19.4.375.
  24. Soetens, T., Van Gysel, A., Matthys, S. and Taerwe, L. (2013), "A semi-analytical model to predict the pullout behaviour of inclined hooked-end steel fibres", Constr. Build. Mater., 43, 253-265. https://doi.org/10.1016/j.conbuildmat.2013.01.034.
  25. Tam, L.H. and Lau, D. (2016), "Effect of structural voids on mesoscale mechanics of epoxy-based materials", Multisc. Multiphys. Mech., 1(2), 127-141. https://doi.org/10.12989/csm.2016.5.4.355.
  26. Tregger, N., Corr, D., Graham-Brady, L. and Shah, S. (2007), "Modeling mesoscale uncertainty for concrete in tension", Comput. Concrete, 4(5), 347-362. https://doi.org/10.12989/cac.2007.4.5.347.
  27. Tuyan, M. (2012), "Pullout behavior of single steel fiber from SIFCON matrix", Constr. Build. Mater., 35, 571-577. ttps://doi.org/10.1016/j.conbuildmat.2012.04.110.
  28. Velasco, M., Graciani, E., Tavara, L., Correa, E. and Paris, F. (2018), "BEM multiscale modelling involving micromechanical damage in fibrous composites", Eng. Anal. Bound. Elem., 93, 1-9. https://doi.org/10.1016/j.enganabound.2018.03.012.
  29. Vogt, F., Gypser, A., Kleiner, F. and Osburg, A. (2018), "Polymer concrete for a modular construction system: Investigation of mechanical properties and bond behaviour by means of X-ray CT", International Congress on Polymers in Concrete, Springer.
  30. Wang, L. and Bao, J. (2015), "Mesoscale computational simulation of the mechanical response of reinforced concrete members", Comput. Concrete, 15(2), 305-319. https://doi.org/10.12989/cac.2015.15.2.305.