References
- Abdul Hameed, M. (2005), "A study of mix design and durability of self compacting concrete", MSC. Dissertation, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
- Akbari, M. and Afshar, A. (2013), "Similarity-based error prediction approach for real-time inflow forecasting", Hydrol. Res., 45(4-5), 589-602. https://doi.org/10.2166/nh.2013.098.
- Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011.
- Ashtiani, R.S., Little, D.N. and Rashidi, M. (2018), "Neural network based model for estimation of the level of anisotropy of unbound aggregate systems", Transp. Geotech., 15, 4-12. https://doi.org/10.1016/j.trgeo.2018.02.002.
- Ayazi, M.H., Tosee, V.R. and Jumaat, M.Z. (2009), "Application of artificial neural networks in compressive strength prediction of lightweight concrete with various percentage of scoria instead of sand", Eng. e-Tran., 4(2), 64-68.
- Aydin, A.C. (2007), "Self compactability of high volume hybrid fiber reinforced concrete", Constr. Build. Mater., 21(6), 1149-1154. https://doi.org/10.1016/j.conbuildmat.2006.11.017.
- Azizifar, V. and Babajanzadeh, M. (2018), "Compressive strength prediction of self-compacting concrete incorporating silica fume using artificial intelligence methods", Civil Eng. J., 4(7), 1542-1552. https://doi.org/10.28991/cej-0309193.
- Badrnezhad, R. and Mirza, B. (2014), "Modeling and optimization of cross-flow ultrafiltration using hybrid neural network-genetic algorithm approach", J. Ind. Eng. Chem., 20(2), 528-543. https://doi.org/10.1016/j.jiec.2013.05.012.
- Barbuta, M., Diaconescu, R.M. and Harja, M. (2012), "Using neural networks for prediction of properties of polymer concrete with fly ash", J. Mater. Civil Eng., 24(5), 523-528. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000413.
- Beigi, M.H., Berenjian, J., Lotfi Omran, O., Sadeghi Nik, A. and Nikbin, I. (2013), "An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete", Mater. Des., 50, 1019-1029. https://doi.org/10.1016/j.matdes.2013.03.046.
- Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005.
- Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B, 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054.
- Champa, H.N. and AnandaKumar, K.R. (2010), "Artificial neural network for human behavior prediction through handwriting analysis", Int. J. Comput. App., 2(2), 36-41. https://doi.org/10.5120/629-878.
- Corinaldesi, V. and Moriconi, G. (2011), "Characterization of selfcompacting concretes prepared with different fibers and mineral additions", Cement Concrete Compos., 33(5), 596-601. https://doi.org/10.1016/j.cemconcomp.2011.03.007.
- Cybenko, G. (1989), "Approximation by superpositions of a sigmoidal function. Mathematics of control", Math. Control. Signal. Syst., 2(4), 303-314. https://doi.org/10.1007/BF02551274.
- Das, S., Pal, P. and Singh, R.M. (2015), "Prediction of concrete mix proportion using ANN technique", Int. Res. J. Eng. Technol., 2(5), 820-825.
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Constr. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004.
- Desai, V.V., Deshmukh, V.B. and Rao, D.H. (2011), "Pseudo random number generator using elman neural network", IEEE Recent Advances in Intelligent Computational Systems (RAICS), Trivandrum, India, September. https://doi.org/10.1109/RAICS.2011.6069312.
- Devos, N.J. and Rientjes, T.H.M. (2005), "Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation", Hydrol. Earth. Syst. Sci., 9(1-2), 111-126. https://doi.org/10.5194/hess-9-111-2005.
- Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15(7), 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X.
- Douglas, R.P. (2004), "Properties of self-consolidating concrete containing type F fly ash", MSC. Dissertation, Northwestern University, Evanston, Illinois.
- Dubey, R. and Kumar, P. (2012), "Effect of superplasticizer dosages on compressive strength of self-compacting concrete", Int. J. Civil Struct. Eng., 3(2), 360-366. https://doi.org/10.6088/ijcser.201203013034.
- Dumne, S.M. (2014), "Effect of superplasticizer on fresh and hardened properties of self-compacting concrete containing fly ash", Am. J. Eng. Res., 3(3), 205-211.
- Elman, J.L. (1990), "Finding structure in time", Cog. Sci., 14(2), 179-211. https://doi.org/10.1016/0364-0213(90)90002-E.
- Fathi, A., Mazari, M. and Saghafi, M. (2019), "Multivariate global sensitivity analysis of rocking responses of shallow foundations under controlled rocking", Proceedings of the 8th International Conference on Case Histories in Geotechnical Engineering, Philadelphia, Pennsylvania, March.
- Funahashi, K.I. (1989), "On the approximate realization of continuous map- pings by neural networks", Neur. Netw., 2(3), 183-192. https://doi.org/10.1016/0893-6080(89)90003-8.
- Ghafoori, N., Najimi, M., Sobhani, J. and Agel, M.A. (2013), "Predicting rapid chloride permeability of self-consolidating concrete: A comparative study on statistical and neural network models", Constr. Build. Mater., 44, 381-390. https://doi.org/10.1016/j.conbuildmat.2013.03.039.
- Gopi, E.S. (2007), Algorithm Collections for Digital Signal Processing Applications Using Matlab, Springer, Netherlands, Heidelberg, Baden-Wurttemberg, Germany.
- Guneyisi, E., Gesoglu, M. and Ozbay, E. (2010), "Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures", Constr. Build. Mater., 24(10), 1878-1887. https://doi.org/10.1016/j.conbuildmat.2010.04.015.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag New York, NY. USA.
- Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, MacMillan Publishing Company, New York, NY, USA.
- Hornik, K. (1991), "Approximation capabilities of multilayer feedforward networks", Neur. Netw., 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neur. Netw., 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
- Hossain, K.M.A., Lachemi, M., Sammour, M. and Sonebi, M. (2013), "Strength and fracture energy characteristics of selfconsolidating concrete incorporating polyvinyl alcohol, steel and hybrid fibers", Constr. Build. Mater., 45, 20-29. https://doi.org/10.1016/j.conbuildmat.2013.03.054.
- Indra Kiran, N.V.N., Pramila devi, M. and Lakshmi, G.V. (2010), "Effective control chart pattern recognition using artificial neural networks", Int. J. Comput. Sci. Netw. Secur., 10(3), 194-199.
-
Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing
$SiO_2$ micro and nanoparticles", Mater. Des., 34, 389-400. https://doi.org/10.1016/j.matdes.2011.08.037. - Kalogirou, S.A. (2000), "Applications of artificial neural-networks for energy systems", Appl. Energy, 67(1-2), 17-35. https://doi.org/10.1016/S0306-2619(00)00005-2.
- Kanellopoulas, I. and Wilkinson, G.G. (1997), "Strategies and best practice for neural network image classification", Int. J. Remote Sens., 18(4), 711-725. https://doi.org/10.1080/014311697218719.
- khademi, F.S. and Jamal, S.M.M. (2016), "Predicting the 28 days compressive strength of concrete using artificial neural network", J. Civil Eng., 6(2), 1-7. https://doi.org/10.26634/jce.6.2.5936.
- Khaleel, O.R., Al-Mishhadani, S.A. and Abdul Razak, H. (2011), "The effect of coarse aggregate on fresh and hardened properties of Self-Compacting Concrete (SCC)", Procedia Eng., 14, 805-813. https://doi.org/10.1016/j.proeng.2011.07.102.
- Koker, R. (2006), "Design and performance of an intelligent predictive controller for a six-degree-of-freedom robot using the Elman network", Inf. Sci., 176(12), 1781-1799. https://doi.org/10.1016/j.ins.2005.05.002.
- Krenker, A., Bešter, J. and Kos, A. (2011), Introduction to the Artificial Neural Networks, Ed. Suzuki, K., Artificial Neural Networks: Methodological Advances and Biomedical Applications, Intech, Rijeka, Carotia.
- Krishna, A.V., Krishna Rao, B. and Rajagopal, A. (2010), "Effect of different sizes of coarse aggregate on the properties of NCC and SCC", Int. J. Eng. Sci. Technol., 2(10), 5959-5965.
- Kumar, R., Madan, S.K., Devgan, N.P. and Roshan, L. (2013), "An experimental study on performance of self compacting concrete contaning lime stone quarry fines and fly ash", Asian J. Civil Eng., 15(3), 421-433.
- Li, F.X., Yu, Q.J., Wei, J.X. and Li, J.X. (2011), "Predicting the workability of self-compacting concrete using artificial neural network", Adv. Mater. Res., 168-170, 1730-1734. https://doi.org/10.4028/www.scientific.net/AMR.168-170.1730.
- Lohr, S.L. (2009), Sampling: Design and Analysis, 2th Edition, Cengage Learning, Boston, Massachusetts, USA.
- Mahajan, S. and Singh, D. (2013), "Fresh & hardened preperties of self compacting concrete incorporating different binder materials", Int. J. Emerg. Technol. Adv. Eng., 3(12), 689-693.
- Masters, T. (1993), Practical Neural Network Recipes in C++, Academic Press Professional, San Diego, CA, USA.
- MATLAB Software (2013), Neural Network Toolbox: mapminmax, R2013b, Version: (8.2.0.701).
- May, R.J., Maier, H.R. and Dandy, G.C. (2010), "Data splitting for artificial neural networks using som-based stratified sampling", Neur. Netw., 23(2), 283-294. https://doi.org/10.1016/j.neunet.2009.11.009.
- Moyo, V. and Sibanda, K.H. (2015), "Training set size for generalization ability of artificial neural networks in forecasting TCP/IP traffic trends", Int. J. Comput. Appl., 113(13), 14-19. https://doi.org/10.5120/19885-1902
- Muluneh, A. (2014), "Control chart pattern recognition for multivariate autocorrelated processes using artificial neural network", MSC. Dissertation, Addis Ababa University of Mechanical and Industrial Engineering, Addis Ababa, Ethiopia.
-
Nazari, A. and Riahi, S.H. (2011), "Prediction split tensile strength and water permeability of high strength concrete containing
$TiO_2$ nanoparticles by artificial neural network and genetic programming", Compos. Part B., 42(3), 473-488. https://doi.org/10.1016/j.compositesb.2010.12.004. - Ouchi, M., Nakamura, S., Osterson, T., Hellberg, S. and Lwin, M. (2003), "Applications of self- compacting concrete in Japan, Europe and the United States", Proceedings of the 5th International Symposium on High Performance Computing, ISHPC, Tokyo-Odaiba, Japan, October.
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054.
- Pala, M., Özbay, E., Öztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silika fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-94. https://doi.org/10.1016/j.conbuildmat.2005.08.009.
- Panagoulia, D., Tsekouras, G.J. and Kousiouris, G.A. (2017), "Multi-stage methodology for selecting input variables in ANN forecasting of river flows", Global. Nest. J., 19(1), 49-57. https://doi.org/10.30955/gnj.002067.
- Patel, A., Bhuva, P., George, E. and Bhatt, D. (2011), "Compressive strength and nodulus of elasticity of selfcompacting concrete", National Conference on Recent Trends in Engineering & Technology, Gujarat, India, May.
- Piryonesi, S.M. and El-Diraby, T.E. (2018), "Using data analytics for cost-effective prediction of road conditions: Case of the pavement condition index", Research Report No. FHWA-HRT-18-065, U.S. Department of Transportation, Federal Highway Administration, Washington, DC.
- Prasad Meesaraganda, L.V., Saha, P. and Tarafder, N. (2019), Artificial Neural Network for Strength Prediction of Fibers' Self-compacting Concrete, Eds. Bansal, J., Das, K., Nagar, A., Deep, K., and Ojha, A., Soft Computing for Problem Solving, Advances in Intelligent Systems and Computing, Springer, Singapore, Malaysia.
- Provost, F. and Fawcett, T. (2013), Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking, O'Reilly Media, Sebastopol, CA.
- Rajaram, M., Ravichandran, A. and Muthadh, A. (2018), "Prediction on mechanical properties of hybrid fiber concrete using MatLab", Int. Res. J. Eng. Technol., 5(7), 2426-2432.
- Ranjbar, M.M., Madandoust, R., Mousavi, S.Y. and Yosefi, S. (2013), "Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete", Constr. Build. Mater., 47, 806-813. https://doi.org/10.1016/j.conbuildmat.2013.05.097.
- Reitermanova, Z. (2010), "Data splitting", Proceedings of the 19th Annual Conference of Doctoral Students, Part I, Mathematics and Computer Sciences, Prague, Jun.
- Richards, E.L. (1991), "Generalization in neural networks: experiments in speech recognition", Ph.D. Dissertation, University of Colorado, Boulder, Colorado.
- Sahmaran, M., Yurtseven, A. and Ozgur Yaman, I. (2005), "Workability of hybrid fiber reinforced self-compacting concrete", Build. Environ., 40(12), 1672-1677. https://doi.org/10.1016/j.buildenv.2004.12.014.
- Shah, S.V., Pawar, D.A., Patil, A.S., Bhosale, P.S., Subhedar, A.S. and Bhosale, G.D. (2018), "Concrete mix design using artificial neural network", Int. J. Adv. Res. Sci. Eng., 7(3), 251-259.
- Shahin, M.A., Jaksa, M.B. and Maier, HR. (2009), "Recent advances and future challenges for artificial neural systems in geotechnical engineering applications", Adv. Artif. Neur. Syst., 2009, 1-9. http://dx.doi.org/10.1155/2009/308239.
-
Soleymani, F. and Karimi Livary, A. (2012), "Artificial neural network for predicting flexural strength of concrete containing
$Cr_2O_3$ nanoparticles", J. Am. Sci., 8(8), 155-162. - Sonebi, M., Grünewald, S., Cevik, A. and Walraven, J. (2016), "Modelling fresh properties of self-compacting concrete using neural network technique", Comput. Concrete, 18(4), 903-921. https://doi.org/10.12989/cac.2016.18.4.903.
- Topcu, I.B. and Saridemir, M. (2007), "Prediction of properties of waste AAC aggregate concrete using artificial neural network", Comp. Mater. Sci., 41(1), 117-125. https://doi.org/10.1016/j.commatsci.2007.03.010.
- Turk, K. and Karatas, M. (2011), "Abrasion resistance and nechanical preperties of self-compacting concrete with different dosage of fly Ash/Silica fume", Ind. J. Eng. Mater. S., 18(1), 49-60.
- Uysal, M. and Tanyildizi, H. (2012), "Estimation of compressive strength of self- compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network", Constr. Build. Mater., 27(1), 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028.
- Uysal, M. and Yilmaz, K. (2011), "Effect of mineral admixtures on properties of self-compacting concrete", Cement Concrete Compos., 33(7), 771-776. https://doi.org/10.1016/j.cemconcomp.2011.04.005.
- Vakhshouri, B. and Nejadi, SH. (2015), "Predication of compressive strength in light-weight self-compacting concrete by ANFIS analytical mModel", Arch. Civil Eng., 2, 53-72. https://doi.org/10.1515/ace-2015-0014.
- Venkateswara Rao, S., Seshagiri Rao, M.V. and Rathish Kumar, P. (2010), "Effect of size of aggregate and fines on standard and high strength self compacting concrete", J. Appl. Sci. Res., 6(5), 433-442.
- Wang, H., Guo, W., Zhao, R., Zhou, B. and Hu, C. (2018), A Real-Time Online Security Situation Prediction Algorithm for Power Network Based on Adaboost and SVM, Eds. Yang, C.N., Peng S.L. and Jain, L., Security with Intelligent Computing and Bigdata Services, Advances in Intelligent Systems and Computing, Springer, Cham, Basel, Switzerland.
- Wu, W., May, R., Dandy, G.C. and Maier, H.R. (2012), "A method for comparing data splitting approaches for developing hydrological ANN models", Proceedings of the 6th International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Leipzig, Germany, July.
- Yazicioglu, S., Caliskan, S. and Turk, K. (2006), "Effect of curing condition on the engineering properties of self-compacting concrete", Ind. J. Eng. Mater., 13(1), 25-29.
- Yeh, I. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.
- Yuan, Z., Wang, L.N. and Ji, X. (2014), "Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and ANFIS", Adv. Eng. Softw., 67, 156-163. https://doi.org/10.1016/j.advengsoft.2013.09.004.