참고문헌
- Bennai, R., Hassen, A.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.18.3.793.
- Bolotin, V.V. (1956), The Dynamic Stability of Elastic Systems, Gostekhizdat, Moscow, Russia.
- Bose, S., Chugh, P. and Gupta, A. (2012), "Effect of Elastic Foundation and Damping on Parametric Instability of Beams", International Conference on Structural and Civil Engineering, Hong Kong, July.
- Bremen, H.F., Sokolinsky, V.S., Lavoie, J.A. and Nutt, S.R. (2001), "Experimental and analytical study of natural vibration modes of soft-core sandwich beams", Proceedings of the 46th International SAMPE Symposium and Exhibition, CA, Long Beach, USA.
- Cunedioglu, Y. (2015), "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", Struct. Eng. Mech., 56(6), 1003-1020. https://doi.org/10.12989/sem.2015.56.6.1003.
- Demir, E. (2017), "Vibration and damping behaviors of symmetric layered functional graded sandwich beams", Struct. Eng. Mech., 62. (6), 771-780. https://doi.org/10.12989/sem.2017.62.6.771.
- Doddamani, M.R., Kulkarni, and S.M. Kishore, (2011), "Behavior of sandwich beams with functionally graded rubber core in three point bending", Polym. Compos., 32, 1541-1551. https://doi.org/10.1002/pc.21173.
- Dwivedy, S.K., Sahu, K.C. and Babu. S. (2007), "Parametric instability regions of three layered soft-cored sandwich beam using higher order theory", J. Sound Vib., 304, 326-344. https://doi.org/10.1016/j.jsv.2007.03.016.
- Fattahi, A.M and Safaei, B. (2017), "Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions", Microsyst. Technol., 23(10), 5079-5091. https://doi.org/10.1007/s00542-017-3345-5.
- Frostig, Y. (1998), "Buckling of sandwich panels with flexible core-high order theory", J. Solid Struct., 35 (3-4), 183-204. https://doi.org/10.1016/S0020-7683(97)00078-4.
- Frostig, Y. and Baruch, M. (1990), "Bending of sandwich beams with transversely flexible core", AIAA J., 28(3), 523-531. https://doi.org/10.2514/3.10423.
- Frostig, Y. and Baruch, M. (1994), "Free vibrations of sandwich beams with a transversely flexible core: A higher order approach", J. Sound Vib., 176(2), 195-208. https://doi.org/10.1006/jsvi.1994.1368.
- Frostig, Y. and Baruch, M. (1996), "Localized load effects in high-order bending of sandwich panels with flexible core," J. Eng. Mech., 122(11), 1069-1076. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:11(1069).
- Frostig, Y. and Shenar, Y. (1995), "High-order bending of sandwich beams with a transversely flexible core and unsymmetrical laminated composite skins", Compos. Eng., 5(4), 405-414. https://doi.org/10.1016/0961-9526(95)93440-7.
- Frostig, Y. and Thomsen, O.T. (2004), "Higher-order free vibration of sandwich panel with a flexible core", J. Solid Struct., 41, 1697-1724. https://doi.org/10.1016/j.ijsolstr.2003.09.051.
- Ghosh, R., Dharmavaram, S., Ray, K. and Dash, P. (2005). "Dynamic stability of a viscoelastically supported sandwich beam", Struct. Eng. Mech., 19(5), 503-517. https://doi.org/10.12989/sem.2005.19.5.503.
- Huang, Z.C., Qin, Z. and Chu, F. (2015), "Vibration and damping characteristics analysis of viscoelastic sandwich beams based on the shear dissipating energy assumption", J. Vib. Shock, 34. https://doi.org/10.13465/j.cnki.jvs.2015.07.029.
- Huang, Z., Qin, Z. and Chu, F. (2015), "A comparative study of finite element modeling techniques for dynamic analysis of elastic-viscoelastic-elastic sandwich structures", J. Sandwich Struct. Mater., 18(5), 531-551. https://doi.org/10.1177/1099636215623091.
- Jam, E.J., Eftari, B. and Taghavian, S.H. (2010), "A new improved high-order theory for analysis of free vibration of sandwich panels", Polym. Compos., 31(12), 2042-2048. https://doi.org/10.1002/pc.21002.
- Kar, R.C. and Sujata, T. (1991), "Dynamic stability of a tapered symmetric sandwich beam", Comput. Struct., 40, 1441-1449. https://doi.org/10.1016/0045-7949(91)90414-H.
- Khalili, S.M.R., Kheirikhah, M.M. and Malekzadeh Fard, K. (2015), "Buckling analysis of composite sandwich plates with flexible core using improved high-order theory", Mech. Adv. Mater. Struct., 22(4), 233-247. https://doi.org/10.1080/15376494.2012.736051.
- Khdeir, A.A. and O. J. Aldraihem, O.J. (2016), "Free vibration of sandwich beams with soft core", Compos. Struct., 154, 179-189. https://doi.org/10.1016/j.compstruct.2016.07.045.
- Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2011), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", European J. Mech. A Solids, 31(1), 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003.
- Liu, Q. and Zhao, Y. (2006), "Natural frequency analysis of a sandwich panel with soft core based on a refined shear deformation model", Compos. Struct., 72, 364-374. https://doi.org/10.1016/j.compstruct.2005.01.006.
- Malekzadeh Fard, K. (2014), "Higher order free vibration of sandwich curved beams with a functionally graded core", Struct. Eng. Mech., 49(5), 537-554. https://doi.org/10.12989/sem.2014.49.5.537.
- Malekzadeh Fard, K., Livani, M., veisi, A. and Gholami, M. (2011), "Improved high-order bending analysis of double curved sandwich panels subjected to multiple loading conditions", Lat. Am. J. Solids Struct., 11(9), 1591-1614. http://dx.doi.org/10.1590/S1679-78252014000900006.
- Malekzadeh, K., Khalili, A.M.R. and gorgabad, A.V. (2015), "Dynamic response of composite sandwich beams with arbitrary functionally graded cores subjected to low-velocity impact", Mech. Adv. Mater. Struct., 22, 605-618. https://doi.org/10.1080/15376494.2013.828814.
- Malekzadeh, K., Khalili, M.R. and Mittal, R.K. (2005), "Local and global damped vibrations of plates with a viscoelastic soft flexible core: An improved high-order approach", J. Sandwich Struct. Mater., 7(5), 431-456. https://doi.org/10.1177/1099636205053748.
- Malekzadeh, K., Khalili, S.M.R. and Gorgabad, A.V. (2015), "Dynamic response of composite sandwich beams with arbitrary functionally graded cores subjected to low-velocity impact", Mech. Adv. Mater. Struct., 22, 605-618. https://doi.org/10.1080/15376494.2013.828814.
- Mohanty, S.C., Dash, R.R. and Rout, T. (2010), "Static and dynamic analysis of a functionally graded Timoshenko beam on Winkler's elastic foundation", J. Eng. Res. Studies, 241, 2698-2715. https://doi.org/10.1142/S0219455412500253.
- Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2018), "Vibrational behavior of sandwich plates with functionally graded wavy carbon nanotube-reinforced face sheets resting on Pasternak elastic foundation", J. Vib. Control, 24(11), 2327-2343. https://doi.org/10.1177/1077546316686227.
- Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2014), "Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core", European J. Mech., A/Solids, 47,143-145. https://doi.org/10.1016/j.euromechsol.2014.03.004.
- Patel, B.P., Ganapathi, M., Prasad, K.R. and Balamurugan, V. (1999), "Dynamic instability of layered anisotropic composite plates on elastic foundations", Eng. Struct., 21, 985-995. https://doi.org/10.1016/S0141-0296(98)00063-7.
- Petras, A. and Sutcliffe, M.P.F. (1999), "Indentation resistance of sandwich beams", Composite Structures, 46(4), 413-424. https://doi.org/10.1016/S0263-8223(99)00109-9.
- Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028.
- Pourasghar, A. and Chen, Z. (2019), "Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams", J. Eng. Sci., 137, 57-72. https://doi.org/10.1016/j.ijengsci.2019.02.002.
- Pourasghar, A. and Kamarian, S. (2013), "Dynamic stability analysis of functionally graded nanocomposite non-uniform column reinforced by carbon nanotube", J. Vib. Control, 1-10. https://doi.org/10.1177/1077546313513625.
- Pourasghar, A. Homauni, M, and Kamarian, S. (2015), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanobeam using the eringen nonlocal elasticity theory under axial load", Polym. Compos., 37(11), 3175-3180. https://doi.org/10.1002/pc.23515.
- Pradhan, M., Mishra, M.K. and Dash, P.R. (2016), "Free vibration analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation", Procedia Eng., 144, 116-123. https://doi.org/10.1016/j.proeng.2016.05.014.
- Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012.
- Qin, Zh, Pang, X, Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions" J. Mech. Sci., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
- Qin, Zh, Yang, Zh, Zu, J, and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", J. Mech. Sci., 142-143, 127-139. https://doi.org/10.1016/j.ijmecsci.2018.04.044.
- Rahmani, O., Khalili, S.M.R., Malekzadeh, K. and Hadavinia, H. (2009), "Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core", Compos. Struct., 91(2), 229-235. https://doi.org/10.1016/j.compstruct.2009.05.007.
- Ray, K. and Kar, R. (1995), "Parametric instability of a sandwich beam with various boundary conditions", Comput. Struct., 55, 857-870. https://doi.org/10.1016/0045-7949(94)00427-5.
- Ray, K. and Kar, R.C. (1996), "Parametric instability of multi-layered sandwich beams", J. Sound Vib., 193, 631-644. https://doi.org/10.1006/jsvi.1996.0305.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells,Theory and Analysis, 2nd ed., CRC Press, Florida, USA.
- Safaei, B, Moradi-Dastjerdi, R. and Chu, F. (2018), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Part B Eng., 192, 28-37. https://doi.org/10.1016/j.compstruct.2018.02.022.
- Safaei, B, Moradi-Dastjerdi, R, Qin, Z. and Chu, F. (2018), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049.
- Sarma, B.S. and Varadan, T.K. (1983), "Lagrange-type formulation for finite element analysis of non-linear beam vibrations", J. Sound Vib., 86(1), 61-70. https://doi.org/10.1016/0022-460X(83)90943-4.
- Smyczynski, M., and Magnucka, E. (2018), "Stability of five layer sandwich beams - A nonlinear hypothesis", Steel Compos. Struct., 28(6), 671-679. https://doi.org/10.12989/scs.2018.28.6.671.
- Sokolinsky, V.S. and Nutt, S.R. (2004), "Consistent higher-order dynamic equations for soft-core sandwich beams", AIAA J., 42(2), 374-382. https://doi.org/10.2514/1.2742
- Sokolinsky, V.S., Bremen, H.F., Lavoie, J.A. and Nutt, S.R. (2004), "Analytical and experimental study of free vibration response of soft-core sandwich beams", J. Sandwich Struct. Mater., 6(3), 239-261. https://doi.org/10.1177/1099636204034634.
- Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B, 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020.
- Yang, M. and Qiao, P. (2005), "Higher-order impact modeling of sandwich structures with flexible core", J. Solid Struct., 42(20), 5460-5490. https://doi.org/10.1016/j.ijsolstr.2005.02.037.
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1 - deflection and stresses", J. Solid Struct., 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: part 2-deflection and stresses", J. Solid Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.016.