DOI QR코드

DOI QR Code

Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations

  • 투고 : 2019.03.10
  • 심사 : 2019.06.02
  • 발행 : 2019.11.25

초록

The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam subjected to a periodic axial load resting on nonlinear elastic foundation. A higher-order theory was used for analysis of sandwich beams with soft core on elastic foundations. In the higher-order theory, the Reddy's third-order theory was used for the face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. The elastic foundation was modeled as nonlinear's type. The dynamic instability regions and free vibration were investigated for simply supported conditions by Bolotin's method. The results showed that the responses of the dynamic instability of the system were influenced by the excitation frequency, the coefficients of foundation, the core thickness, the dynamic and static load factor. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory.

키워드

참고문헌

  1. Bennai, R., Hassen, A.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.18.3.793.
  2. Bolotin, V.V. (1956), The Dynamic Stability of Elastic Systems, Gostekhizdat, Moscow, Russia.
  3. Bose, S., Chugh, P. and Gupta, A. (2012), "Effect of Elastic Foundation and Damping on Parametric Instability of Beams", International Conference on Structural and Civil Engineering, Hong Kong, July.
  4. Bremen, H.F., Sokolinsky, V.S., Lavoie, J.A. and Nutt, S.R. (2001), "Experimental and analytical study of natural vibration modes of soft-core sandwich beams", Proceedings of the 46th International SAMPE Symposium and Exhibition, CA, Long Beach, USA.
  5. Cunedioglu, Y. (2015), "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", Struct. Eng. Mech., 56(6), 1003-1020. https://doi.org/10.12989/sem.2015.56.6.1003.
  6. Demir, E. (2017), "Vibration and damping behaviors of symmetric layered functional graded sandwich beams", Struct. Eng. Mech., 62. (6), 771-780. https://doi.org/10.12989/sem.2017.62.6.771.
  7. Doddamani, M.R., Kulkarni, and S.M. Kishore, (2011), "Behavior of sandwich beams with functionally graded rubber core in three point bending", Polym. Compos., 32, 1541-1551. https://doi.org/10.1002/pc.21173.
  8. Dwivedy, S.K., Sahu, K.C. and Babu. S. (2007), "Parametric instability regions of three layered soft-cored sandwich beam using higher order theory", J. Sound Vib., 304, 326-344. https://doi.org/10.1016/j.jsv.2007.03.016.
  9. Fattahi, A.M and Safaei, B. (2017), "Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions", Microsyst. Technol., 23(10), 5079-5091. https://doi.org/10.1007/s00542-017-3345-5.
  10. Frostig, Y. (1998), "Buckling of sandwich panels with flexible core-high order theory", J. Solid Struct., 35 (3-4), 183-204. https://doi.org/10.1016/S0020-7683(97)00078-4.
  11. Frostig, Y. and Baruch, M. (1990), "Bending of sandwich beams with transversely flexible core", AIAA J., 28(3), 523-531. https://doi.org/10.2514/3.10423.
  12. Frostig, Y. and Baruch, M. (1994), "Free vibrations of sandwich beams with a transversely flexible core: A higher order approach", J. Sound Vib., 176(2), 195-208. https://doi.org/10.1006/jsvi.1994.1368.
  13. Frostig, Y. and Baruch, M. (1996), "Localized load effects in high-order bending of sandwich panels with flexible core," J. Eng. Mech., 122(11), 1069-1076. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:11(1069).
  14. Frostig, Y. and Shenar, Y. (1995), "High-order bending of sandwich beams with a transversely flexible core and unsymmetrical laminated composite skins", Compos. Eng., 5(4), 405-414. https://doi.org/10.1016/0961-9526(95)93440-7.
  15. Frostig, Y. and Thomsen, O.T. (2004), "Higher-order free vibration of sandwich panel with a flexible core", J. Solid Struct., 41, 1697-1724. https://doi.org/10.1016/j.ijsolstr.2003.09.051.
  16. Ghosh, R., Dharmavaram, S., Ray, K. and Dash, P. (2005). "Dynamic stability of a viscoelastically supported sandwich beam", Struct. Eng. Mech., 19(5), 503-517. https://doi.org/10.12989/sem.2005.19.5.503.
  17. Huang, Z.C., Qin, Z. and Chu, F. (2015), "Vibration and damping characteristics analysis of viscoelastic sandwich beams based on the shear dissipating energy assumption", J. Vib. Shock, 34. https://doi.org/10.13465/j.cnki.jvs.2015.07.029.
  18. Huang, Z., Qin, Z. and Chu, F. (2015), "A comparative study of finite element modeling techniques for dynamic analysis of elastic-viscoelastic-elastic sandwich structures", J. Sandwich Struct. Mater., 18(5), 531-551. https://doi.org/10.1177/1099636215623091.
  19. Jam, E.J., Eftari, B. and Taghavian, S.H. (2010), "A new improved high-order theory for analysis of free vibration of sandwich panels", Polym. Compos., 31(12), 2042-2048. https://doi.org/10.1002/pc.21002.
  20. Kar, R.C. and Sujata, T. (1991), "Dynamic stability of a tapered symmetric sandwich beam", Comput. Struct., 40, 1441-1449. https://doi.org/10.1016/0045-7949(91)90414-H.
  21. Khalili, S.M.R., Kheirikhah, M.M. and Malekzadeh Fard, K. (2015), "Buckling analysis of composite sandwich plates with flexible core using improved high-order theory", Mech. Adv. Mater. Struct., 22(4), 233-247. https://doi.org/10.1080/15376494.2012.736051.
  22. Khdeir, A.A. and O. J. Aldraihem, O.J. (2016), "Free vibration of sandwich beams with soft core", Compos. Struct., 154, 179-189. https://doi.org/10.1016/j.compstruct.2016.07.045.
  23. Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2011), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", European J. Mech. A Solids, 31(1), 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003.
  24. Liu, Q. and Zhao, Y. (2006), "Natural frequency analysis of a sandwich panel with soft core based on a refined shear deformation model", Compos. Struct., 72, 364-374. https://doi.org/10.1016/j.compstruct.2005.01.006.
  25. Malekzadeh Fard, K. (2014), "Higher order free vibration of sandwich curved beams with a functionally graded core", Struct. Eng. Mech., 49(5), 537-554. https://doi.org/10.12989/sem.2014.49.5.537.
  26. Malekzadeh Fard, K., Livani, M., veisi, A. and Gholami, M. (2011), "Improved high-order bending analysis of double curved sandwich panels subjected to multiple loading conditions", Lat. Am. J. Solids Struct., 11(9), 1591-1614. http://dx.doi.org/10.1590/S1679-78252014000900006.
  27. Malekzadeh, K., Khalili, A.M.R. and gorgabad, A.V. (2015), "Dynamic response of composite sandwich beams with arbitrary functionally graded cores subjected to low-velocity impact", Mech. Adv. Mater. Struct., 22, 605-618. https://doi.org/10.1080/15376494.2013.828814.
  28. Malekzadeh, K., Khalili, M.R. and Mittal, R.K. (2005), "Local and global damped vibrations of plates with a viscoelastic soft flexible core: An improved high-order approach", J. Sandwich Struct. Mater., 7(5), 431-456. https://doi.org/10.1177/1099636205053748.
  29. Malekzadeh, K., Khalili, S.M.R. and Gorgabad, A.V. (2015), "Dynamic response of composite sandwich beams with arbitrary functionally graded cores subjected to low-velocity impact", Mech. Adv. Mater. Struct., 22, 605-618. https://doi.org/10.1080/15376494.2013.828814.
  30. Mohanty, S.C., Dash, R.R. and Rout, T. (2010), "Static and dynamic analysis of a functionally graded Timoshenko beam on Winkler's elastic foundation", J. Eng. Res. Studies, 241, 2698-2715. https://doi.org/10.1142/S0219455412500253.
  31. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2018), "Vibrational behavior of sandwich plates with functionally graded wavy carbon nanotube-reinforced face sheets resting on Pasternak elastic foundation", J. Vib. Control, 24(11), 2327-2343. https://doi.org/10.1177/1077546316686227.
  32. Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2014), "Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core", European J. Mech., A/Solids, 47,143-145. https://doi.org/10.1016/j.euromechsol.2014.03.004.
  33. Patel, B.P., Ganapathi, M., Prasad, K.R. and Balamurugan, V. (1999), "Dynamic instability of layered anisotropic composite plates on elastic foundations", Eng. Struct., 21, 985-995. https://doi.org/10.1016/S0141-0296(98)00063-7.
  34. Petras, A. and Sutcliffe, M.P.F. (1999), "Indentation resistance of sandwich beams", Composite Structures, 46(4), 413-424. https://doi.org/10.1016/S0263-8223(99)00109-9.
  35. Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028.
  36. Pourasghar, A. and Chen, Z. (2019), "Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams", J. Eng. Sci., 137, 57-72. https://doi.org/10.1016/j.ijengsci.2019.02.002.
  37. Pourasghar, A. and Kamarian, S. (2013), "Dynamic stability analysis of functionally graded nanocomposite non-uniform column reinforced by carbon nanotube", J. Vib. Control, 1-10. https://doi.org/10.1177/1077546313513625.
  38. Pourasghar, A. Homauni, M, and Kamarian, S. (2015), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanobeam using the eringen nonlocal elasticity theory under axial load", Polym. Compos., 37(11), 3175-3180. https://doi.org/10.1002/pc.23515.
  39. Pradhan, M., Mishra, M.K. and Dash, P.R. (2016), "Free vibration analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation", Procedia Eng., 144, 116-123. https://doi.org/10.1016/j.proeng.2016.05.014.
  40. Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012.
  41. Qin, Zh, Pang, X, Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions" J. Mech. Sci., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
  42. Qin, Zh, Yang, Zh, Zu, J, and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", J. Mech. Sci., 142-143, 127-139. https://doi.org/10.1016/j.ijmecsci.2018.04.044.
  43. Rahmani, O., Khalili, S.M.R., Malekzadeh, K. and Hadavinia, H. (2009), "Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core", Compos. Struct., 91(2), 229-235. https://doi.org/10.1016/j.compstruct.2009.05.007.
  44. Ray, K. and Kar, R. (1995), "Parametric instability of a sandwich beam with various boundary conditions", Comput. Struct., 55, 857-870. https://doi.org/10.1016/0045-7949(94)00427-5.
  45. Ray, K. and Kar, R.C. (1996), "Parametric instability of multi-layered sandwich beams", J. Sound Vib., 193, 631-644. https://doi.org/10.1006/jsvi.1996.0305.
  46. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells,Theory and Analysis, 2nd ed., CRC Press, Florida, USA.
  47. Safaei, B, Moradi-Dastjerdi, R. and Chu, F. (2018), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Part B Eng., 192, 28-37. https://doi.org/10.1016/j.compstruct.2018.02.022.
  48. Safaei, B, Moradi-Dastjerdi, R, Qin, Z. and Chu, F. (2018), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049.
  49. Sarma, B.S. and Varadan, T.K. (1983), "Lagrange-type formulation for finite element analysis of non-linear beam vibrations", J. Sound Vib., 86(1), 61-70. https://doi.org/10.1016/0022-460X(83)90943-4.
  50. Smyczynski, M., and Magnucka, E. (2018), "Stability of five layer sandwich beams - A nonlinear hypothesis", Steel Compos. Struct., 28(6), 671-679. https://doi.org/10.12989/scs.2018.28.6.671.
  51. Sokolinsky, V.S. and Nutt, S.R. (2004), "Consistent higher-order dynamic equations for soft-core sandwich beams", AIAA J., 42(2), 374-382. https://doi.org/10.2514/1.2742
  52. Sokolinsky, V.S., Bremen, H.F., Lavoie, J.A. and Nutt, S.R. (2004), "Analytical and experimental study of free vibration response of soft-core sandwich beams", J. Sandwich Struct. Mater., 6(3), 239-261. https://doi.org/10.1177/1099636204034634.
  53. Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B, 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020.
  54. Yang, M. and Qiao, P. (2005), "Higher-order impact modeling of sandwich structures with flexible core", J. Solid Struct., 42(20), 5460-5490. https://doi.org/10.1016/j.ijsolstr.2005.02.037.
  55. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1 - deflection and stresses", J. Solid Struct., 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  56. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: part 2-deflection and stresses", J. Solid Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.016.