DOI QR코드

DOI QR Code

Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm

  • Ghiamat, R. (Civil Engineering group, Pardis College, Isfahan University of Technology) ;
  • Madhkhan, M. (Department of Civil Engineering, Isfahan University of Technology) ;
  • Bakhshpoori, T. (Faculty of Technology and Engineering, Department of Civil Engineering, East of Guilan, University of Guilan)
  • 투고 : 2018.08.21
  • 심사 : 2019.07.09
  • 발행 : 2019.11.25

초록

The construction of segmental precast concrete bridge is an increase due to its superior performance and economic advantages. This type of bridge is appropriate for spans within 30 to 150 m (100 to 500 ft), known as mega-projects and the design optimization would lead to considerable economic benefits. A box-girder cross section superstructure of balanced cantilever construction method is assessed here. The depth of cross section, (variable along the span linearly), bottom flange thickness, and the count of strands are considered as design variables. The optimum design is characterized by geometry, serviceability, ductility, and ultimate limit states specified by AASHTO. Genetic algorithm (GA) is applied in two fronts: as to the saving in construction cost 8% and as to concrete volume 6%. The sensitivity analysis is run by considering different parameters like span/depth ratio, relation between superstructure cost, span length and concrete compressive strength.

키워드

참고문헌

  1. AASHTO (2002), Standard Bridge Design Specifications, Washington, DC., USA.
  2. AASHTO (2007), LRFD Bridge Design Specifications, Washington, DC., USA.
  3. AASHTO (2017), LRFD Bridge Design Specifications, Washington, DC., USA.
  4. Abd Elrehim, M.Z., Eid, M.A. and Sayed, M.G. (2019), "Structural optimization of concrete arch bridges using Genetic Algorithms", Ain Shams Eng. J., https://doi.org/10.1016/j.asej.2019.01.005.
  5. Ahsan, R., Rana, S. and Ghani, S.N. (2011), "Cost optimum design of posttensioned I-girder bridge using global optimization algorithm", J. Struct. Eng., 138(2), 273-284. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000458
  6. Al-Osta, M.A., Azad, A.K. and Al-Gahtani, H.J. (2012), "Optimization of continuous posttensioned concrete bridge girders of non-uniform depth", Arab. J. Sci. Eng., 37(2), 265-276. https://doi.org/10.1007/s13369-012-0169-6.
  7. Alqedra, M., Arafa, M. and Ismail, M. (2011), "Optimum cost of prestressed and reinforced concrete beams using genetic algorithms", J. Art. Int., 4(1), 76-88. https://doi.org/10.3923/jai.2011.
  8. Aydin, Z. and Ayvaz, Y. (2010), "Optimum topology and shape design of prestressed concrete bridge girders using a genetic algorithm", Struct. Multidiscip. Optim., 41(1), 151-162. https://doi.org/10.1007/s00158-009-0404-2.
  9. Aydin, Z. and Ayvaz, Y. (2013), "Overall cost optimization of prestressed concrete bridge using genetic algorithm", KSCE J. Civ. Eng., 17(4), 769-776. https://doi.org/10.1007/s12205-013-0355-4.
  10. Baradaran, M. and Madhkhan, M. (2019), "Determination of optimal configuration for mega bracing systems in steel frames using genetic algorithm", KSCE J. Civ. Eng., 1-12. https://doi.org/10.1007/s12205-019-2369-z.
  11. Chang, B., Mirtalaei, K., Lee, S. and Leitch, K. (2012), "Optimization of Post-Tensioned Box Girder Bridges with Special Reference to Use of High-Strength Concrete Using AASHTO LRFD Method", Adv. Civil. Eng., 2012. https://doi.org/10.1155/2012/673821.
  12. Duan, L. and Chen, W.F. (2014), Bridge Engineering Handbook: Superstructure Design, Taylor and Francis, New York, USA.
  13. Gao, Q., Yang, M.G. and Qiao, J.D. (2017), "A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder", Struct. Eng. Mech., 64(5), 567-577. https://doi.org 10.12989/sem.2017.64.5.567.
  14. Hasancebi, O., Bahcecioglu, T., Kurc, O. and Saka, M. (2011), "Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm", Comput. Struct., 89(21-22), 2037-2051. https://doi.org/10.1016/j.compstruc.2011.05.019.
  15. Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Comput. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006
  16. Heins, C.P. and Lawrie, R.A. (1984), Design of Modern Concrete Highway Bridges, John Wiley and Sons, New York, USA.
  17. Holland, J.H. (1975), Adaptation In Natural And Artificial Systems: An Introductory Analysis With Applications to Biology, Control and Artificial Intelligence, University of Michigan Press. USA. https://doi.org/10.1145/1216504.1216510.
  18. Jiang, H., Chen, Y., Liu, A., Wang, T. and Fang, Z. (2016), "Effect of high-strength concrete on shear behavior of dry joints in precast concrete segmental bridges", Steel Compos. Struct., 22(5), 1019-1038. https://doi.org/10.12989/scs.2016.22.5.1019.
  19. Kaveh, A., Bakhshpouri, T. and Barkhori, M.A. (2014), "Optimum design of multi-span composite box girder bridges using Cuckoo search algorithm", Steel Compos. Struct., 17(5), 705-719. https://doi.org/10.1007/978-3-319-48012-1_3.
  20. Kaveh, A., Maniat, M. and Naeini, M.A. (2016), "Cost optimum design of post-tensioned concrete bridges using a modified colliding bodies optimization algorithm", Adv. Eng. Soft., 98, 12-22. http://dx.doi.org/10.1016/j.advengsoft.2016.03.003.
  21. Lacey, G. and Breen, J. (1975), The Design and Optimization of Segmentally Precast Prestressed Box Girder Bridges, University of Texas, Austin, TX, USA.
  22. Madhkhan, M., Kianpour, A. and Harchegani, M.T. (2013), "Life-cycle cost optimization of prestressed simple-span concrete bridges with simple and spliced girders", Iran. J. Sci. Technol. Trans. Civil. Eng., 37(C1), 53.
  23. Morab, A.N. and Fernandes, R.J. (2018), "Optimization of box girder bridge using genetic algorithm method", IOSR J. Mech. Civil Eng., 15(3), 24-29. http://dx.doi.org/10.9790/1684-1503032429.
  24. PCI,Prestressed Concrete Institute (1978), Manual, Precast Segmental Box Girder Bridge, Chicago, Illinois, USA.
  25. Podolny Jr, W. (1979), "An overview of precast prestressed segmental bridges", PCI, 24(1), 56-87. https://doi.org/10.15554/pcij.01011979.56.87
  26. Quaranta, G., Fiore, A. and Marano, G.C. (2014), "Optimum design of prestressed concrete beams using constrained differential evolution algorithm", Struct. Multidiscip. Optim., 49(3), 441-453. http://dx.doi.org/10.1007/s00158-013-0979-5.
  27. Rahman, M. M., Jumaat, M. Z. and Islam, A. (2017), "Weight minimum design of concrete beam strengthened with glass fiber reinforced polymer bar using genetic algorithm", Comput. Concrete, Int. J., 19(2), 127-131. https://doi.org/10.12989/cac.2017.19.2.127.
  28. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., Int. J., 29(2), 243-256. http://dx.doi.org/10.12989/scs.2018.29.2.243.
  29. Sirca Jr, G.F. and Adeli, H. (2005), "Cost optimization of prestressed concrete bridges", J. struct. Eng., 131(3), 380-388. http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:3(380).
  30. Torres, G. G. B., Brotchie, J. and Cornell, C. (1966), "A program for optimum design of prestressed concrete highway bridges", PCI, 11(3), 63-71. https://doi.org/10.15554/pcij.06011966.63.71.
  31. Turkeli, E. (2017), "Optimum design of partially prestressed concrete beams using Genetic Algorithms", Struct. Eng. Mech., Int. J., 64(5), 579-589. https://doi.org/10.12989/sem.2017.64.5.579.
  32. Xu, D., Lei, J. and Zhao, Y. (2016), "Prestressing optimization and local reinforcement design for a mixed externally and internally prestressed precast segmental bridge", J. Bridge Eng., 21(7), 05016003. http://doi.org/10.1061/(ASCE)BE.1943-592.0000904.
  33. Yepes, V., Perez-Lopez, E., Garcia-Segura, T. and Alcala, J. (2019), "Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges", Int. J. Comput. Methods Experimental Measurements, 7(2), 118-129. https://doi.org/10.2495/CMEM-V7-N2-118-129