References
- Abo-Dahab, S.M., and Mohamed R.A. (2010), "Influence of magnetic field and hydrostatic initial stress on wave reflection from a generalized thermoelastic solid half-space", J. Vib. Cont., 16, 685-699. https://doi.org/10.1177/1077546309104187.
- Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, North-Holland, New York, USA.
- Bayones, F.S., and Abd-Alla, A.M. (2018), "Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium", Result. Phys., 8, 7-15. https://doi.org/10.1016/j.rinp.2017.09.021.
- Bijarnia, R., and Singh, B. (2012), "Propagation of plane waves in an anisotropic generalized thermoelastic solid with diffusion", J. Eng. Phys. Thermophy., 85, 442-448. https://doi.org/10.1007/s10891-012-0676-z.
- Biot, M.A. (1965), Mechanics of Incremental Deformation, Wiley, New York, USA
- Biswas, S., and Abo-Dahab, S.M. (2018), "Effect of phase-lags on Rayleigh wave propagation in initially stressed magneto-thermoelastic orthotropic medium", Appl. Math. Model., 59, 713-727. https://doi.org/10.1016/j.apm.2018.02.025.
- Chadwick, P. (1957), "Elastic wave propagation in a magnetic field", Proc. Congr. Int. Appl. Mech. Brussels., 7, 143-158.
- Deswal, S., and Choudhary, S. (2009), "Impulsive effect on an elastic solid with generalized thermodiffusion", J. Eng. Math., 63, 79-94. https://doi.org/10.1007/s10665-008-9249-8.
- Deswal, S., and Kalkal, K. (2011), "A two-dimensional generalized electromagnet thermoviscoelastic problem for a half-space with diffusion", Int. J. Therm. Sci., 50, 749-759. https://doi.org/10.1016/j.ijthermalsci.2010.11.016.
- Deswal, S., Kalkal, K.K., and Sheoran, S.S. (2016), "Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction", Phys. B, 496, 57-68. https://doi.org/10.1016/j.physb.2016.05.008.
- Green, A.E., and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2, 1-7. https://doi.org/10.1007/BF00045689.
- Deswal, S., Kalkal, K.K. and Sheoran S.S. (2017), "A magneto-thermo-viscoelastic problem with fractional order strain under GN-II model", Struct. Eng. Mech, 63, 89-102. https://doi.org/10.12989/sem.2017.63.1.089.
- Jain, K., Kalkal, K.K., and Deswal, S. (2018), "Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium", Struct. Eng. Mech, 68, 215-226. https://doi.org/10.12989/sem.2018.68.2.215.
- Kalkal, K.K., Sheokand, S.K., and Deswal, S. (2018), "Rotation and phase-lag effects in a micropolar thermo-viscoelastic half-space", Iran. J. Sci. Tech. https://doi.org/10.1007-/s40997-018-0212-7.
- Knopoff, L. (1955), "The interaction between elastic wave motions and a magnetic field in electrical conductors", J. Geophys. Res., 60, 441-456. https://doi.org/10.1029/JZ060i004p00441.
- Kumar, R., and Kansal, T. (2008), "Propagation of Lamb waves in transversely isotropic thermoelastic diffusive plate", Int. J. Solid. Struct., 45, 5890-5913. https://doi.org/10.1016/j.ijsolstr.2008.07.005.
- Kumar, R., and Singh, M. (2009), "Effect of rotation and imperfection on reflection and transmission of plane waves in anisotropic generalized thermoelastic media", J. Sound. Vib., 324, 773-797. https://doi.org/10.1016/j.jsv.2009.02.024.
- Kumar, R., and Kansal, T. (2011), "Reflection of plane waves at the free surface of a transversely isotropic thermoelastic diffusive solid half-space", Int. J. Appl. Math. Mech., 7, 57-78.
- Kumar, R., and Chawla, V. (2013), "Fundamental solution for the plane problem in magnetothermoelastic diffusion media", CMST, 19, 195-207. https://doi.org/10.12921/cmst.2013.19.4.195-207
- Lord, H.W., and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Montanaro, A. (1999), "On singular surfaces in isotropic linear thermoelasticity with initial stress", J. Acoust. Society America, 106, 1586-1588. https://doi.org/10.1121/1.427154.
- Nayfeh, A.H., and Nemat-Nasser, S. (1972), "Electromagneto-thermoelastic plane waves in solids with thermal relaxation", ASME J. Appl. Mech., 39, 108-113. https://doi.org/10.1115/1.3422596.
- Nowacki, W. (1974a), "Dynamical problems of thermodiffusion in solids I", Bull. Acad. Pol. Sci. Ser. Sci. Tech., 22, 55-64.
- Nowacki, W. (1974b), "Dynamical problems of thermodiffusion in solids II", Bull. Acad. Pol. Sci. Ser. Sci. Tech., 22, 129-135.
- Nowacki, W. (1974c), "Dynamical problems of thermodiffusion in solids III", Bull. Acad. Pol. Sci. Ser. Sci. Tech., 22, 257-266.
- Othman, M.I.A., and Song, Y. (2011), "Reflection of magneto-thermo-elastic waves from a rotating elastic half-space in generalized thermoelasticity under three theories", Mech. Mechanical Eng., 15, 5-24. https://doi.org/10.1016/j.ijengsci.2007.12.004.
- Othman, M.I.A., Hilal, M.I.M., and Elmaklizi, Y.D. (2017), "The effect of gravity and diffusion on micropolar thermoelasticity with temperature-dependent elastic medium under G-N theory", Mech. Mechanical Eng., 21, 657-677.
- Paria, G. (1962), "On magneto-thermoelastic plane waves", Math. Proc. Cambridge Philos. Soc., 58, 527-531. https://doi.org/10.1017/S030500410003680X
- Said, S.M., and Othman, M.I.A. (2016), "Wave propagation in a two temperature fiber reinforced magneto thermoelastic medium with three phase lag model", Struct. Eng. Mech., 57, 201-220. http://dx.doi.org/10.12989/sem.2016.57.2.201.
- Schoenberg, M., and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708.
- Sharma, N., Kumar R., and Ram P. (2008), "Dynamical behaviour of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28, 19-38. http://dx.doi.org/10.12989/sem.2008.28.1.019.
- Sharma, J.N., Walia, V., and Gupta, S.K. (2008), "Effect of rotation and thermal relaxation on Rayleigh waves in piezo thermoelastic half-space", Int. J. Mech. Sci., 50, 433-444. https://doi.org/10.1016/j.ijmecsci.2007.10.001.
- Sherief, H.H., Hamza, F., and Saleh, H. (2004), "The theory of generalized thermoelastic diffusion", Int. J. Eng. Sci., 42, 591-608. https://doi.org/10.1016/j.ijengsci.2003.05.001.
- Yadav, R., Deswal, S., and Kalkal, K.K. (2017), "Propagation of waves in an initially stressed generalized electromicrostretch thermoelastic medium with temperature-dependent properties under the effect of rotation", J. Therm. Stress., 40, 281-301. https://doi.org/10.1080/01495739.2016.1266452.
Cited by
- Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space vol.77, pp.4, 2019, https://doi.org/10.12989/sem.2021.77.4.473
- The effect of multi-phase-lag and Coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.125
- Three-phase-lag model on a micropolar magneto-thermoelastic medium with voids vol.78, pp.2, 2019, https://doi.org/10.12989/sem.2021.78.2.187