DOI QR코드

DOI QR Code

Nonlinear static analysis of laminated composite beams under hygro-thermal effect

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University)
  • 투고 : 2019.04.02
  • 심사 : 2019.06.20
  • 발행 : 2019.11.25

초록

In this paper, geometrically nonlinear static analysis of laminated composite beams is investigated under hygrothermal effect. In the solution of problem, the finite element method is used within the first shear beam theory. Total Lagrangian approach is used nonlinear kinematic model. The geometrically nonlinear formulations are developed for the laminated beams with hygro-thermal effects. In the nonlinear solution of the problem, the Newton-Raphson method is used with incremental displacement. In order to verify of obtained formulations, a comparison study is performed. The effects of the fiber orientation angles, the stacking sequence of laminates, temperature rising and moisture changes on the nonlinear static displacements and configurations of the composite laminated beam are investigated in the numerical results.

키워드

참고문헌

  1. Akbas, S.D. (2017a), "Thermal effects on the vibration of functionally graded deep beams with porosity", J. Appl. Mech., 9(05), https://doi.org/10.1142/S1758825117500764.
  2. Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupl. Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  3. Akbas S.D. (2018a), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
  4. Akbas S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027.
  5. Akbas S.D. (2018c), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
  6. Akbas S.D. (2018d), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567-576. https://doi.org/10.12989/scs.2018.27.5.567.
  7. Akbas, S.D. (2019a), "Hygrothermal Post-Buckling Analysis of Laminated Composite", J. Appl. Mech., 11(1). https://doi.org/10.1142/S1758825119500091.
  8. Akbas, S.D. (2019b), "Post-Buckling Analysis of a Fiber Reinforced Composite Beam with Crack", Eng. Fracture Mech., 212(1), 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.
  9. Akbas, S.D. (2019c), "Nonlinear Behavior of Fiber Reinforced Cracked Composite Beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
  10. Akbas, S.D. (2019d), "Hygro-Thermal Nonlinear Analysis of a Functionally Graded Beam", J. Appl. Comput. Mech., 5(2), 477-485.
  11. Biswal, M., Sahu, S. K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell-experimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. http://dx.doi.org/10.12989/scs.2016.22.6.1445.
  12. Bouazza, M, Amara, K, Zidour,M, Tounsi ,A, Adda-Bedia, E.A., (2014), "Hygrothermal effects on the postbuckling response of composite beams", Am. J. Mater. Res., 1(2): 35-43.
  13. Cardoso, JB., Benedito, N.M. and Valido, A.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin Wall. Struct., 47(11), 1363-1372. https://doi.org/10.1016/j.tws.2009.03.002.
  14. Ebrahimi, F. and Hosseini, S.H.S. (2018), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Struct. Eng. Mech., 65(6), 645-656. https://doi.org/10.1140/epjp/i2017-11400-6.
  15. Farokhi, H., Ghayesh, M. H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007.
  16. Gayen, D. and Roy, T. (2013) "Hygro-thermal effects on stress analysis of tapered laminated composite beam", J. Compos. Mater., 3(3), 46-55. https://doi.org/10.5923/j.cmaterials.20130303.02.
  17. Ghayesh, M. H., Yourdkhani, M., Balar, S. and Reid, T. (2010), "Vibrations and stability of axially traveling laminated beams", Appl. Math. Comput., 217(2), 545-556. https://doi.org/10.1016/j.amc.2010.05.088.
  18. Ghayesh, M. H., Farokhi, H. and Gholipour, A. (2017), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001.
  19. Ghayesh, M. H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Modell., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.
  20. Gholami, R., Ansari, R. and Gholami, Y. (2017), "Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams", Compos. Struct., 174, 45-58. https://doi.org/10.1016/j.compstruct.2017.04.042.
  21. Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029.
  22. Kazemirad, S., Ghayesh, M. H. and Amabili, M. (2013), "Thermo-mechanical nonlinear dynamics of a buckled axially moving beam", Arch. Appl. Mech., 83(1), 25-42. https://doi.org/10.1007/s00419-012-0630-8.
  23. Li, Z.M. and Qiao, P. (2015), "Thermal postbuckling analysis of anisotropic laminated beams with different boundary conditions resting on two-parameter elastic foundations", Europe. J. Mech. A Solid, 54, 30-43. https://doi.org/10.1016/j.euromechsol.2015.06.001.
  24. Pipes, R.B., Vinson, J.R. and Chou, T.W. (1976), "On the hygrothermal response of laminated composite systems," J. Compos. Mater., 10(2), 129-148. https://doi.org/10.1177/002199837601000203.
  25. Sahu, S.K., Rath, M.K. and Sahoo, R. (2012), "Parametric instability of laminated composite doubly curved shell panels subjected to hygrothermal environment", Adv. Mater. Res., 383, 3212-3216. https://doi.org/10.4028/www.scientific.net/AMR.383-390.3212.
  26. Vinson, J.R. and Sierakowski, R.L. (2002), The Behavior of Structures Composed of Composite Materials, Springer, Germany.
  27. Wang, H., Chen, C.S. and Fung, C.P. (2015), "Hygrothermal effects on the vibration and stability of an initially stressed laminated plate", Struct. Eng. Mech., 56(6), 1041-1061. https://doi.org/10.12989/sem.2015.56.6.1041.
  28. Zenkour, A.M., Mashat, D.S. and Alghanmi, R.A. (2014), "Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory", J. Mech. Mater. Des., 10(2), 213-226. https://doi.org/10.1007/s10999-014-9242-5.
  29. Zhan, Q.W., Fan, X.L. and Sun, Q. (2011), "Effects of hygrothermal environment on static properties of laminated composites with a circular open hole", J. Solid Rocket Technol., 34(6), 764-767. https://doi.org/10.3969/j.issn.1006-2793.2011.06.019

피인용 문헌

  1. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
  2. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  3. Monitoring and control of multiple fraction laws with ring based composite structure vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.129
  4. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.263
  5. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2019, https://doi.org/10.12989/scs.2021.39.2.149
  6. Convergency and Stability of Explicit and Implicit Schemes in the Simulation of the Heat Equation vol.11, pp.10, 2021, https://doi.org/10.3390/app11104468