Acknowledgement
Supported by : Chosun University
References
- Babu, K.G. and Kumar, V.S.R. (2000), "Efficiency of GGBS in concrete", Cement Concrete, 30, 1031-1036. https://doi.org/10.1016/S0008-8846(00)00271-4.
- Cheon, B.S. (1998), Grouting Injection Method, Goomibook, Seoul, Korea.
- Cho, S.K. (2013), "An experimental study on the workability and engineering properties of concrete using ground granulated blast furnace slag", Soc. Convergence Knowledge J., 1(1), 43-50.
- Gaurav, S., Souvik, D., Abdulaziz, A.A., Showmen, S. and Sommath, K. (2015), "Study of granulated blast furnace slag as fine aggregates in concrete for sustainable infrastructure", Proc. Soc. Behav. Sci., 195, 2272-2279. https://doi.org/10.1016/j.sbspro.2015.06.316.
- Glossop, R. (1960), "The invention and development of injection processes", Geotechnique, 10(3), 90-100. https://doi.org/10.1680/geot.1960.10.3.91.
- Han, C.G., Kim, S.H. and Son, H.J. (2009), "Engineering characteristics analysis of high strength concrete followed in replacement ratio increase in blast furnace slag", J. Kor. Recycled Construct. Resour. Inst., 10(7), 62-68.
- Khajuria, C. and Siddique, R. (2014), "Use of iron slag as partial replacement of sand to concrete", Int. J. Sci. Eng. Technol. Res., 3(6), 1877-1880.
- Kim, D. and Park, K. (2017), "Evaluation of the grouting in the sandy ground using bio injection material", Geomech. Eng., 12(5), 739-752. https://doi.org/10.12989/gae. 2017.12.5.739.
- Kim, D.Y., Cho, H.K. and Lee, H.S. (2014), "Effects of the reaction degree of ground granulated blast furnace slag on the properties of cement past", Geomech. Eng., 26(6), 723-730. http://dx.doi.org/10.4334/JKCI.2014.26.6.723.
- Kim, J.H., Han, M.C. and Han, C.G. (2014), "Strength development of the concrete incorporating blast furnace slag and recycled aggregate as alkali activator", J. Kor. Recycled Construct. Resour. Inst., 2(2), 107-115. https://doi.org/10.14190/JRCR.2014.2.2.107.
- Kim, T.W. and Hahm, H.G. (2015), "The strength properties activated granulated ground blast furnace slag with aluminum potassium sulfate and sodium hydroxide", Geomech. Eng., 27(2), 95-102. http://dx.doi.org/10.4334/JKC I.2015.27.2.095.
- Kutzner, C. (1996), Grouting of Rock and Soil, A.A Balkema Publishers, New York, U.S.A.
- Lee, H.H. (2016), "Material capacity evaluation of concrete using blast furnace slag powder and recycled coarse aggregate", Proceedings of the Architectural Institute of Korea Fall Conference.
- Min, K.S. and Lee, S.H. (2007), "Resistance of alkali activated slag cement mortar to sulfuric acid attack", J. Kor. Cer. Soc., 44(11), 633-638. https://doi.org/10.4191/KCERS.2007.44.1.633.
- Oner, A. and Akyuz, S. (2007), "An experimental study on optimum usage of GGBS for the compressive strength of concrete", Cement Concrete Compos., 29, 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
- Park, W.C., Mun, K.J. Jung, J.J. and Soh, Y.S. (2004), "Evaluation on the physical properties of ultra fine cement for grouting materials", Proceedings of the Korea Concrete Institute Fall Conference.
- Pradhan, K. and Mohanty, C.R. (2017), "Stabilization of expansive soil using industrial wastes", Geomech. Eng., 12(1), 111-125. https://doi.org/10.12989/gae.2017.12.1.111.
- Rabbani, P., Daghigh, Y., Atrechian, M.R., Karimi, M. and Tolooiyan, A. (2012), "The potential of lime and grand granulated blast furnace slag(GGBFS) mixture for stabilization of desert silty sands", J. Civ. Eng. Res., 2(6), 108-119. https://doi.org/10.5923/j.jce.20120206.07.
- Sanderson, R.A., Cann, G.M. and Provis, J.L. (2018), "The effect of blast-furnace slag particle size on the hydration of slag-Portland cement grouts at elevated temperatures", Adv. Cement Res., 30(8), 337-344. https://doi.org/10.1680/jadcr.17.00136.
- Seo, H., Park, K.H., Kim, C.J., Kim, H.C. and Kim, D. (2019), "Development of reinforcement grout materials using blast furnace slag powder and aramid fiber", J. Kor. Geosynth. Soc., 18(1), 67-77. http://doi.org/10.12814/jkgss.2019.18.1.067.
- Shi, C. and Day, R.L. (1995), "A calorimetric study of early hydration of alkali-slag cement", Cement Concrete Res., 25(6), 1333-1346. https://doi.org/10.1016/0008-8846(95)00126-w.
- Shucai, L., Fei, S., Wei, L. and Rentai, L. (2017), "Properties of cement-based grouts with high amounts of ground granulated blast furnace slag and fly ash", J. Mater. Civ. Eng., 29(11), 1-11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002083.
- Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649.
- Sudarvizhi M.S. and Ilangovan, R. (2011), "Performance of copper slag and ferrous slag as partial replacement of sand in concrete", Int. J. Civ. Struct. Eng., 1(4), 918-927.
- Yadu, L. and Tripathi, R.K. (2013), "Effectiveness of granulated blast furnace slag over sand as overay for the stabilization of soft clay", Int. J. Adv. Technol. Civ. Eng., 2(2), 32-37.
- Zhang, J., Li, S., Li, Z., Zhang, Q., Li, H., Du, J. and Qi, Y. (2019), "Properties of fresh and hardened geopolymer-based grouts", Ceramics-Silikaty, 63(2), 164-174. https://doi.org/10.13168/cs.2019.0008.
Cited by
- Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS vol.24, pp.6, 2019, https://doi.org/10.12989/gae.2021.24.6.505