과제정보
연구 과제 주관 기관 : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
참고문헌
- Carneiro, F. (1943), "A new method to determine the tensile strength of concrete", Proceedings of the 5th meeting of the Brazilian Association for Technical Rules.
- Carneiro, F.L.L.B. (1943), "A new method to determine the tensile strength of concrete", Proceedings of the 5th meeting of the Brazilian Association for Technical Rules.
- Chen, Y.L. and Irfan, M. (2018), "Experimental study of Kaiser effect under cyclic compression and tension tests", Geomech. Eng., 14(2), 203-209. https://doi.org/10.12989/gae.2018.14.2.203.
- Cho, J.W., Kim, H., Jeon, S. and Min, K.B. (2012), "Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist", Int. J. Rock Mech. Min. Sci., 50, 158-169. http://dx.doi.org/10.1016%2Fj.ijrmms.2011.12.004. https://doi.org/10.1016/j.ijrmms.2011.12.004
- Dai, F. and Xia, K. (2010), "Loading rate dependence of tensile strength anisotropy of barre granite", Pure Appl. Geophys., 167(11), 1419-1432. https://doi.org/10.1007/s00024-010-0103-3.
- Fairhurst, C. (1964), "On the validity of the 'Brazilian' test for brittle materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1(4), 535-546. https://doi.org/10.1016/0148-9062(64)90060-9.
- Gong, F.Q., Li, X.B. and Zhao, J. (2010), "Analytical algorithm to estimate tensile modulus in Brazilian disk splitting tests", Chin. J. Rock Mech. Eng., 29(5), 881-891.
- Hondros, G. (1959), "The evaluation of Poisson's ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete", Austr. J. Appl. Sci., 10(3), 243-268.
- Hudson, J.A., Brown, E.T. and Rummel, F. (1972), "The controlled failure of rock discs and rings loaded in diametral compression", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 9(2), 241-248. https://doi.org/10.1016/0148-9062(72)90025-3.
- Jaeger, J.C., Cook, N.G.W. and Zimmerman, R. (2007), Fundamentals of Rock Mechanics, 4th Edition, Wiley-Blackwell.
- Jiang, C., Zhao, G.F. and Khalili, N. (2017), "On crack propagation in brittle material using the distinct lattice spring model", Int. J. Solids Struct., 118-119, 41-57. https://doi.org/10.1016/j.ijsolstr.2017.04.024.
- Jung, Y.B., Cheon, D.S., Park, E.S., Chan, P., Lee, Y.S., Park, C.W. and Choi, B.H. (2014), "Estimation of the characteristics of delayed failure and long-term strength of granite by brazilian disc test", Tunn. Undergr. Sp., 24(1), 67-80. https://doi.org/10.7474/TUS.2014.24.1.067.
- Li, D.Y. and Wong, L.N.Y. (2013), "The Brazilian disc test for rock mechanics applications: Review and new insights", Rock Mech. Rock Eng., 46(2), 269-287. https://doi.org/10.1007/s00603-012-0257-7.
- Li, X.F., Li, H.B. and Zhao, J. (2017), "3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock", Comput. Geotech., 90, 96-112. https://doi.org/10.1016/j.compgeo.2017.05.023.
- Liu, Y., Dai, F., Xu, N., Zhao, T. and Feng, P. (2018), "Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method", Soil Dyn. Earthq. Eng., 105, 68-82. https://doi.org/10.1016/j.soildyn.2017.11.025.
- Newman, D.A. and Bennett, D.G. (1990), "The effect of specimen size and stress rate for the Brazilian test-A statistical analysis", Rock Mech. Rock Eng., 23(2), 123-134. https://doi.org/10.1007/BF01020397.
- Patel, S. and Martin, C.D. (2018), "Evaluation of tensile Young's modulus and Poisson's ratio of a bi-modular rock from the displacement measurements in a Brazilian test", Rock Mech. Rock Eng., 51(2), 361-373. https://doi.org/10.1007/s00603-017-1345-5.
- Roy, D.G. and Singh, T.N. (2016), "Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition", Rock Mech. Rock Eng., 49(5), 1663-1677. https://doi.org/10.1007/s00603-015-0891-y.
- Timoshenko, S.P. and Goodier, J.N. (2013), Theory of Elasticity, Beijing Higher Education Press, Beijing, China.
- Wang, P., Cai, M. and Ren, F. (2018), "Anisotropy and directionality of tensile behaviours of a jointed rock mass subjected to numerical Brazilian tests", Tunn. Undergr. Sp. Technol., 73, 139-153. https://doi.org/10.1016/j.tust.2017.12.018.
- Wijk, G. (1978), "Some new theoretical aspects of indirect measurements of the tensile strength of rocks", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(4), 149-160. https://doi.org/10.1016/0148-9062(78)91221-4.
- Yang, Y.T., Tang, X.H., Zheng, H., Liu, Q.S. and He, L. (2016), "Three-dimensional fracture propagation with numerical manifold method", Eng. Anal. Boundary Elem., 72(11), 65-77. https://doi.org/10.1016/j.enganabound.2016.08.008.
- Ye, J.H., Wu, F.Q. and Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", Int. J. Rock Mech. Min. Sci., 46(3), 568-576. https://doi.org/10.1016/j.ijrmms.2008.08.004.
- Yu, Q.L., Zhu, W.C., Tang, C.A. and Yang, T.H. (2014), "Impact of rock microstructures on failure processes - Numerical study based on DIP technique", Geomech. Eng., 7(4), 375-401. https://doi.org/10.12989/gae.2014.7.4.375.
- Zhao, J. and Li, H.B. (2000), "Experimental determination of dynamic tensile properties of a granite", Int. J. Rock Mech. Min. Sci., 37(5), 861-866. https://doi.org/10.1016/S1365-1609(00)00015-0
- Zhou, Z.L., Cai, X., Cao, W.Z., Li, X.B. and Xiong, C. (2016), "Influence of water content on mechanical properties of rock in both saturation and drying processes", Rock Mech. Rock Eng., 49(8), 3009-3025. https://doi.org/10.1007/s00603-016-0987-z.
- Zhu, W.C. and Tang, C.A. (2004), "Micromechanical model for simulating the fracture process of rock", Rock Mech. Rock Eng., 37(1), 25-56. https://doi.org/10.1007/s00603-003-0014-z.
- Zhu, W.C. and Tang, C.A. (2006), "Numerical simulation of Brazilian disk rock failure under static and dynamic loading", Int. J. Rock Mech. Min. Sci., 43(2), 236-252. https://doi.org/10.1016/j.ijrmms.2005.06.008.
피인용 문헌
- Estimation of tensile strength and moduli of a tension-compression bi-modular rock vol.24, pp.4, 2021, https://doi.org/10.12989/gae.2021.24.4.349