DOI QR코드

DOI QR Code

Fractional order generalized thermoelastic study in orthotropic medium of type GN-III

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University Patiala) ;
  • Zakhmi, Himanshi (Department of Basic and Applied Sciences, Punjabi University Patiala)
  • 투고 : 2019.07.30
  • 심사 : 2019.11.02
  • 발행 : 2019.11.20

초록

The present paper is concerned with the investigation of disturbances in orthotropic thermoelastic medium by using fractional order heat conduction equation with three phase lags due to thermomechanical sources. Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in transformed domain and further in physical domain using numerical inversion techniques. The effect of fractional parameter based on its conductivity i.e., ($0<{\alpha}<1$ for weak, ${\alpha}=1$ for normal, $1<{\alpha}{\leq}2$ for strong conductivity) is depicted graphically on various components.

키워드

참고문헌

  1. Abbas, I.A. (2007), "Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity", Forsch Ingenieurwes, 71(3-4), 215-222. https://doi.org/10.1007/s10010-007-0060-x.
  2. Abbas, I.A. (2018), "A study on fractional order theory in thermoelastic half-space under thermal loading", Phys. Mesomech., 21(2), 150-156. https://doi.org/10.1134/S102995991802008X.
  3. Abbas, I.A. and Abdalla, A.N. (2008), "Effects of thermal relaxations on thermoelastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity", Arch. Appl. Mech., 78(4), 283-293. https://doi.org/10.1007/s00419-007-0156-7.
  4. Abbas, I.A. and Youssef, H.M. (2015), "Two dimensional fractional order generalized thermoelastic porous material", J. Solid. Struct., 12(7), 1415-143. http://dx.doi.org/10.1590/1679-78251584.
  5. Abouelregal, A.E. (2018), "The effect of temperature-dependent physical properties and fractional thermoelasticity on non-local nano beams", J. Math. Theor. Phys., 1(2), 49-58.
  6. Adolfsson, K. and Enelund, M. and Olsson P. (2005), "On the fractional order model of viscoelasticity", Mech. Time Dependent Mater., 9(1), 15-34. https://doi.org/10.1007/s11043-005-3442-1.
  7. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  8. Bachher, M. and Sarkar, N. (2016), "Fractional order magnetothermoelasticity in a rotating media with one relaxation time", J. Math. Model. Eng., 2(1), 56-67.
  9. Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017), "Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model", J. Therm. Stresses, 40(4), 403-419. http://doi.org/10.1080/01495739.2017.1283971.
  10. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  11. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  12. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  13. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
  14. Caputo, M. (1967), "Linear model of dissipation whose Q is almost frequency independent-II", Geophys. J. Royal Astronom. Soc. Vanner, 13(5), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.
  15. Catteno, C. (1958), "A form of heat conduction equation which eliminates the paradox of instantaneous propagation", Comptes Rendus, 247, 431-433.
  16. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  17. Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. http://doi.org/10.1115/1.3098984.
  18. Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828.
  19. Ezzat, M.A. (2010), "Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer", Physica B Condensed Matter, 405(19), 4188-4194. https://doi.org/10.1016/j.physb.2010.07.009.
  20. Hassan, M., Marin, M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid nano-fluids", Heat Transfer Res., 49(18), 1837-1848. http://doi.org/10.1615/HeatTransRes.2018025569.
  21. Honig, G. and Hirdes, U. (1984), "A method for numerical inversion of Laplace transforms", J. Comput. Appl. Math., 10(1), 113-132. http://doi.org/10.1016/0377-0427(84)90075-x.
  22. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  23. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  24. Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", J. Adv. Math. Appl., 3(1), 47-54. https://doi.org/10.1166/jama.2014.1050.
  25. Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of hall current and two temperature transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. http://doi.org/10.1080/15376494.2016.1196769.
  26. Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperature and rotation", J. Solid Mech. 8(4), 840-858.
  27. Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12989/sem.2019.70.2.245.
  28. Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://doi.org/10.12989/scs.2019.32.6.779.
  29. Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources", Coupled Syst. Mech., 8(3), 219-245. http://doi.org/10.12989/csm.2019.8.3.219.
  30. Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., 69(6), 607-614. http://doi.org/10.12989/sem.2019.69.6.607.
  31. Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Ciencias Mathematics (Havana), 16(2), 101-109.
  32. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. http://doi.org/10.1063/1.532809.
  33. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng., 126, 27-37. http://doi.org/10.1016/j.compositesb.2017.05.063.
  34. Marin, M. and Othman, M.I.A. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3873. http://doi.org/10.1016/j.rinp.2017.10.012.
  35. Marin, M., Othman, M.I.A., Vlase, S. and Codarcea-Munteanu, L. (2019), "Thermoelasticity of initially stressed bodies with voids:A domain of influence, Symmetry, 11(573), 1-12. http://doi.org/10.3390/sym11040573.
  36. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  37. Muhammad, R., Singh, B., Arifa, S., Nazeer, M., Usman, M., Arif, S., Bibi, M. and Jahangir, A. (2019), "Harmonic waves solution in dual phase lag magneto-thermoelasticity", Open Phys., 17(1), 8-15. http://doi.org/10.1515/phys-2019-0002
  38. Oldham, K.B. and Spainer, J. (1974), The Fractional Calculus, Academic Press.
  39. Othman, M.I.A. and Jahangir, A. (2015), "Plane waves on rotating microstetch elastic solid with temperature dependent elastic properties", Int. J. Appl. Math. Inform. Sci., 9(6), 2963-2972. http://dx.doi.org/10.12785/amis/090624.
  40. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986), Numerical Recipes in Fortran, Cambridge University Press.
  41. Raslan, W. (2015), "Application of fractional order theory of thermoelasticity in a thick plate under axisymmetric temperature distribution", J. Therm. Stresses, 38(7), 733-743. http://doi.org/10.1080/01495739.2015.1040307.
  42. Roychoudhuri, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stresses, 30(3), 231-238. http://doi.org/10.1080/01495730601130919.
  43. Roychoudhuri, S.K. (2007), "One-dimensional thermoelastic waves in elastic half-space with dual-phase-lag effects", J. Mech. Mater. Struct., 2(3), 489-503. http://dx.doi.org/10.2140/jomms.2007.2.489.
  44. Tian, X., Shen, Y., Chen, C. and He, T. (2006), "A direct finite element method study of generalized thermoelastic problems", Int. J. Solids Struct., 43, 2050-2063. http://doi.org/10.1016/j.ijsolstr.2005.06.071.
  45. Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transfer, 117(1), 8-16. http://doi.org/10.1115/1.2822329.
  46. Vernotte P. (1958), "Les paradox de la theorie continue de l'equation de la chaleur", Comptes Rendus, 246, 3145-3155.
  47. Yadav, R., Kumar, K. and Deswal, S. (2015), "Two temperature thermal viscoelasticity with fractional order strain subjected to moving heat source", J. Math., 1-13. http://dx.doi.org/10.1155/2015/487513.
  48. Youssef, H.M. and Abbas, I.A. (2007), "Thermal shock problem of generalized thermo-elasticity for an infinitely long annular cylinder with variable thermal conductivity", Comput. Meth. Sci. Technol., 13(2), 95-100. http://doi.org/10.12921/csmt.2007.13.02.95-100.
  49. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  50. Zenkour, A.M. (2018), "A generalized thermoelastic dual-phaselagging response of thick beams subjected to harmonically varying heat and pressure", J. Theor. Appl. Mech., 56(1), 15-30. http://doi.org 10.15632/jtam-pl.56.1.15.

피인용 문헌

  1. Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2019, https://doi.org/10.12989/sem.2021.77.3.315