References
- Abbas, I.A. (2007), "Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity", Forsch Ingenieurwes, 71(3-4), 215-222. https://doi.org/10.1007/s10010-007-0060-x.
- Abbas, I.A. (2018), "A study on fractional order theory in thermoelastic half-space under thermal loading", Phys. Mesomech., 21(2), 150-156. https://doi.org/10.1134/S102995991802008X.
- Abbas, I.A. and Abdalla, A.N. (2008), "Effects of thermal relaxations on thermoelastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity", Arch. Appl. Mech., 78(4), 283-293. https://doi.org/10.1007/s00419-007-0156-7.
- Abbas, I.A. and Youssef, H.M. (2015), "Two dimensional fractional order generalized thermoelastic porous material", J. Solid. Struct., 12(7), 1415-143. http://dx.doi.org/10.1590/1679-78251584.
- Abouelregal, A.E. (2018), "The effect of temperature-dependent physical properties and fractional thermoelasticity on non-local nano beams", J. Math. Theor. Phys., 1(2), 49-58.
- Adolfsson, K. and Enelund, M. and Olsson P. (2005), "On the fractional order model of viscoelasticity", Mech. Time Dependent Mater., 9(1), 15-34. https://doi.org/10.1007/s11043-005-3442-1.
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Bachher, M. and Sarkar, N. (2016), "Fractional order magnetothermoelasticity in a rotating media with one relaxation time", J. Math. Model. Eng., 2(1), 56-67.
- Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017), "Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model", J. Therm. Stresses, 40(4), 403-419. http://doi.org/10.1080/01495739.2017.1283971.
- Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
- Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
- Caputo, M. (1967), "Linear model of dissipation whose Q is almost frequency independent-II", Geophys. J. Royal Astronom. Soc. Vanner, 13(5), 529-539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.
- Catteno, C. (1958), "A form of heat conduction equation which eliminates the paradox of instantaneous propagation", Comptes Rendus, 247, 431-433.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
- Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. http://doi.org/10.1115/1.3098984.
- Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828.
- Ezzat, M.A. (2010), "Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer", Physica B Condensed Matter, 405(19), 4188-4194. https://doi.org/10.1016/j.physb.2010.07.009.
- Hassan, M., Marin, M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid nano-fluids", Heat Transfer Res., 49(18), 1837-1848. http://doi.org/10.1615/HeatTransRes.2018025569.
- Honig, G. and Hirdes, U. (1984), "A method for numerical inversion of Laplace transforms", J. Comput. Appl. Math., 10(1), 113-132. http://doi.org/10.1016/0377-0427(84)90075-x.
- Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
- Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
- Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", J. Adv. Math. Appl., 3(1), 47-54. https://doi.org/10.1166/jama.2014.1050.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of hall current and two temperature transversely isotropic magnetothermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. http://doi.org/10.1080/15376494.2016.1196769.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperature and rotation", J. Solid Mech. 8(4), 840-858.
- Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12989/sem.2019.70.2.245.
- Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://doi.org/10.12989/scs.2019.32.6.779.
- Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources", Coupled Syst. Mech., 8(3), 219-245. http://doi.org/10.12989/csm.2019.8.3.219.
- Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., 69(6), 607-614. http://doi.org/10.12989/sem.2019.69.6.607.
- Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Ciencias Mathematics (Havana), 16(2), 101-109.
- Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. http://doi.org/10.1063/1.532809.
- Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng., 126, 27-37. http://doi.org/10.1016/j.compositesb.2017.05.063.
- Marin, M. and Othman, M.I.A. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3873. http://doi.org/10.1016/j.rinp.2017.10.012.
- Marin, M., Othman, M.I.A., Vlase, S. and Codarcea-Munteanu, L. (2019), "Thermoelasticity of initially stressed bodies with voids:A domain of influence, Symmetry, 11(573), 1-12. http://doi.org/10.3390/sym11040573.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Muhammad, R., Singh, B., Arifa, S., Nazeer, M., Usman, M., Arif, S., Bibi, M. and Jahangir, A. (2019), "Harmonic waves solution in dual phase lag magneto-thermoelasticity", Open Phys., 17(1), 8-15. http://doi.org/10.1515/phys-2019-0002
- Oldham, K.B. and Spainer, J. (1974), The Fractional Calculus, Academic Press.
- Othman, M.I.A. and Jahangir, A. (2015), "Plane waves on rotating microstetch elastic solid with temperature dependent elastic properties", Int. J. Appl. Math. Inform. Sci., 9(6), 2963-2972. http://dx.doi.org/10.12785/amis/090624.
- Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986), Numerical Recipes in Fortran, Cambridge University Press.
- Raslan, W. (2015), "Application of fractional order theory of thermoelasticity in a thick plate under axisymmetric temperature distribution", J. Therm. Stresses, 38(7), 733-743. http://doi.org/10.1080/01495739.2015.1040307.
- Roychoudhuri, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stresses, 30(3), 231-238. http://doi.org/10.1080/01495730601130919.
- Roychoudhuri, S.K. (2007), "One-dimensional thermoelastic waves in elastic half-space with dual-phase-lag effects", J. Mech. Mater. Struct., 2(3), 489-503. http://dx.doi.org/10.2140/jomms.2007.2.489.
- Tian, X., Shen, Y., Chen, C. and He, T. (2006), "A direct finite element method study of generalized thermoelastic problems", Int. J. Solids Struct., 43, 2050-2063. http://doi.org/10.1016/j.ijsolstr.2005.06.071.
- Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transfer, 117(1), 8-16. http://doi.org/10.1115/1.2822329.
- Vernotte P. (1958), "Les paradox de la theorie continue de l'equation de la chaleur", Comptes Rendus, 246, 3145-3155.
- Yadav, R., Kumar, K. and Deswal, S. (2015), "Two temperature thermal viscoelasticity with fractional order strain subjected to moving heat source", J. Math., 1-13. http://dx.doi.org/10.1155/2015/487513.
- Youssef, H.M. and Abbas, I.A. (2007), "Thermal shock problem of generalized thermo-elasticity for an infinitely long annular cylinder with variable thermal conductivity", Comput. Meth. Sci. Technol., 13(2), 95-100. http://doi.org/10.12921/csmt.2007.13.02.95-100.
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
- Zenkour, A.M. (2018), "A generalized thermoelastic dual-phaselagging response of thick beams subjected to harmonically varying heat and pressure", J. Theor. Appl. Mech., 56(1), 15-30. http://doi.org 10.15632/jtam-pl.56.1.15.
Cited by
- Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2019, https://doi.org/10.12989/sem.2021.77.3.315