DOI QR코드

DOI QR Code

Assessment of speckle image through particle size and image sharpness

  • Qian, Boxing (State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University) ;
  • Liang, Jin (State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University) ;
  • Gong, Chunyuan (State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University)
  • Received : 2019.06.04
  • Accepted : 2019.08.14
  • Published : 2019.11.25

Abstract

In digital image correlation, speckle image is closely related to the measurement accuracy. A practical global evaluation criterion for speckle image is presented. Firstly, based on the essential factors of the texture image, both the average particle size and image sharpness are used for the assessment of speckle image. The former is calculated by a simplified auto-covariance function and Gaussian fitting, and the latter by focusing function. Secondly, the computation of the average particle size and image sharpness is verified by numerical simulation. The influence of these two evaluation parameters on mean deviation and standard deviation is discussed. Then, a physical model from speckle projection to image acquisition is established. The two evaluation parameters can be mapped to the physical devices, which demonstrate that the proposed evaluation method is reasonable. Finally, the engineering application of the evaluation method is pointed out.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T. and Van Hemelrijck, D. (2016), "Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation", Smart Struct. Syst., 17(1), 91-105. https://doi.org/10.12989/sss.2016.17.1.091.
  2. Ashrafi, M. and Tuttle, M.E. (2016), "Measurement of strain gradients using digital image correlation by applying printed-speckle patterns", Exp. Techniques, 40(2), 891-897. DOI: 10.1111/ext.12145.
  3. Crammond, G., Boyd, S.W. and Dulieu-Barton, J.M. (2013), "Speckle pattern quality assessment for digital image correlation", Opt. Laser. Eng., 51(12), 1368-1378. DOI: 10.1016/j.optlaseng.2013.03.014.
  4. Chen, Z., Quan, C., Zhu, F. and He, X. (2015), "A method to transfer speckle patterns for digital image correlation", Meas. Sci. Technol., 26(9), 095201. DOI: 10.1088/0957-0233/26/9/095201.
  5. Dong, Y., Kakisawa, H. and Kagawa, Y. (2015), "Development of microscale pattern for digital image correlation up to 1400 C", Opt. Laser. Eng., 68, 7-15. DOI: 10.1016/j.optlaseng.2014.12.003.
  6. Dai, Y.T., Wang, H.T., Ge, T.Y., Wu, G., Wan, J.X., Cao, S.Y. and He, X.Y. (2017), "Stereo-digital image correlation in the behavior investigation of CFRP-steel composite members", Steel Compos. Struct., 23, 727-736. DOI: 10.12989/scs.2017.23.6.727.
  7. Dong, Y.L. and Pan, B. (2017), "A review of speckle pattern fabrication and assessment for digital image correlation", Exp. Mech., 57(8), 1161-1181. DOI: 10.1007/s11340-017-0283-1.
  8. Hua, T., Xie, H., Wang, S., Hu, Z., Chen, P. and Zhang, Q. (2011), "Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation", Opt. Laser Technol., 43(1), 9-13. DOI: 10.1016/j.optlastec.2010.04.010.
  9. Hu, Y.J., Wang, Y.J., Chen, J.B. and Zhu, J.M. (2018), "A new method of creating high-temperature speckle patterns and its application in the determination of the high-temperature mechanical properties of metals", Exp. Techniques, 42(5), 523-532. DOI: 10.1007/s40799-018-0256-z.
  10. Kumar, A., Vishnuvardhan, S., Murthy, A.R. and Raghava, G. (2019), "Tensile and fracture characterization using a simplified digital image correlation test set-up", Struct. Eng. Mech., 69(4), 467-477. https://doi.org/10.12989/sem.2019.69.4.467.
  11. Lecompte, D., Smits, A.S.H.J.D., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D. and Habraken, A.M. (2006), "Quality assessment of speckle patterns for digital image correlation", Opt. Laser. Eng., 44(11), 1132-1145. DOI: 10.1016/j.optlaseng.2005.10.004.
  12. Lin, H. and Yu, P. (2007), "Speckle mechanism in holographic optical imaging", Opt. Express, 15(25), 16322-16327. DOI: 10.1364/OE.15.016322.
  13. Liu, X.Y., Li, R.L., Zhao, H.W., Cheng, T.H., Cui, G.J., Tan, Q.C. and Meng, G.W. (2015), "Quality assessment of speckle patterns for digital image correlation by Shannon entropy", Optik, 126(23), 4206-4211. DOI: 10.1016/j.ijleo.2015.08.034.
  14. Mazzoleni, P., Zappa, E., Matta, F. and Sutton, M.A. (2015), "Thermo-mechanical toner transfer for high-quality digital image correlation speckle patterns", Opt. Laser. Eng., 75, 72-80. DOI: 10.1016/j.optlaseng.2015.06.009.
  15. Pan, B., Xie, H., Wang, Z., Qian, K. and Wang, Z. (2008), "Study on subset size selection in digital image correlation for speckle patterns", Opt. Express, 16(10), 7037-7048. DOI: 10.1364/OE.16.007037.
  16. Pan, B., Asundi, A., Xie, H. and Gao, J. (2009), "Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements", Opt. Laser. Eng., 47(7-8), 865-874. DOI: 10.1016/j.optlaseng.2008.10.014.
  17. Pan, B., Lu, Z. and Xie, H. (2010), "Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation", Opt. Laser. Eng., 48(4), 469-477. DOI: 10.1016/j.optlaseng.2009.08.010.
  18. Reu, P. (2014), "All about speckles: speckle size measurement", Exp. Techniques, 38(6), 1-2. DOI: 10.1111/ext.12110.
  19. Reu, P. (2015), "All about speckles: edge sharpness", Exp. Techniques, 39(2), 1-2. DOI: 10.1111/ext.12139.
  20. Su, Y., Zhang, Q., Xu, X. and Gao, Z. (2016), "Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors", Opt. Laser. Eng., 86, 132-142. DOI: 10.1016/j.optlaseng.2016.05.019.
  21. Sun, Y.F. and Pang, J.H. (2007), "Study of optimal subset size in digital image correlation of speckle pattern images", Opt. Laser. Eng., 45(9), 967-974. DOI: 10.1016/j.optlaseng.2007.01.012.
  22. Wang, Y.Q., Sutton, M.A., Bruck, H.A. and Schreier, H.W. (2009), "Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements", Strain, 45(2), 160-178. DOI: 10.1111/j.1475-1305.2008.00592.x.
  23. Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M., and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.
  24. Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.
  25. Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016b), "Vision-based structural displacement measurement: system performance evaluation and influence factor analysis", Measurement, 88, 372-384. DOI: 10.1016/j.measurement.2016.01.024.
  26. Yu, H., Guo, R., Xia, H., Yan, F., Zhang, Y. and He, T. (2014), "Application of the mean intensity of the second derivative in evaluating the speckle patterns in digital image correlation", Opt. Laser. Eng., 60, 32-37. DOI: 10.1016/j.optlaseng.2014.03.015.
  27. Zhou, P. and Goodson, K.E. (2001), "Subpixel displacement and deformation gradient measurement using digital image/speckle correlation", Opt. Eng., 40(8), 1613-1621. DOI: 10.1117/1.1387992.