Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T. and Van Hemelrijck, D. (2016), "Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation", Smart Struct. Syst., 17(1), 91-105. https://doi.org/10.12989/sss.2016.17.1.091.
- Ashrafi, M. and Tuttle, M.E. (2016), "Measurement of strain gradients using digital image correlation by applying printed-speckle patterns", Exp. Techniques, 40(2), 891-897. DOI: 10.1111/ext.12145.
- Crammond, G., Boyd, S.W. and Dulieu-Barton, J.M. (2013), "Speckle pattern quality assessment for digital image correlation", Opt. Laser. Eng., 51(12), 1368-1378. DOI: 10.1016/j.optlaseng.2013.03.014.
- Chen, Z., Quan, C., Zhu, F. and He, X. (2015), "A method to transfer speckle patterns for digital image correlation", Meas. Sci. Technol., 26(9), 095201. DOI: 10.1088/0957-0233/26/9/095201.
- Dong, Y., Kakisawa, H. and Kagawa, Y. (2015), "Development of microscale pattern for digital image correlation up to 1400 C", Opt. Laser. Eng., 68, 7-15. DOI: 10.1016/j.optlaseng.2014.12.003.
- Dai, Y.T., Wang, H.T., Ge, T.Y., Wu, G., Wan, J.X., Cao, S.Y. and He, X.Y. (2017), "Stereo-digital image correlation in the behavior investigation of CFRP-steel composite members", Steel Compos. Struct., 23, 727-736. DOI: 10.12989/scs.2017.23.6.727.
- Dong, Y.L. and Pan, B. (2017), "A review of speckle pattern fabrication and assessment for digital image correlation", Exp. Mech., 57(8), 1161-1181. DOI: 10.1007/s11340-017-0283-1.
- Hua, T., Xie, H., Wang, S., Hu, Z., Chen, P. and Zhang, Q. (2011), "Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation", Opt. Laser Technol., 43(1), 9-13. DOI: 10.1016/j.optlastec.2010.04.010.
- Hu, Y.J., Wang, Y.J., Chen, J.B. and Zhu, J.M. (2018), "A new method of creating high-temperature speckle patterns and its application in the determination of the high-temperature mechanical properties of metals", Exp. Techniques, 42(5), 523-532. DOI: 10.1007/s40799-018-0256-z.
- Kumar, A., Vishnuvardhan, S., Murthy, A.R. and Raghava, G. (2019), "Tensile and fracture characterization using a simplified digital image correlation test set-up", Struct. Eng. Mech., 69(4), 467-477. https://doi.org/10.12989/sem.2019.69.4.467.
- Lecompte, D., Smits, A.S.H.J.D., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D. and Habraken, A.M. (2006), "Quality assessment of speckle patterns for digital image correlation", Opt. Laser. Eng., 44(11), 1132-1145. DOI: 10.1016/j.optlaseng.2005.10.004.
- Lin, H. and Yu, P. (2007), "Speckle mechanism in holographic optical imaging", Opt. Express, 15(25), 16322-16327. DOI: 10.1364/OE.15.016322.
- Liu, X.Y., Li, R.L., Zhao, H.W., Cheng, T.H., Cui, G.J., Tan, Q.C. and Meng, G.W. (2015), "Quality assessment of speckle patterns for digital image correlation by Shannon entropy", Optik, 126(23), 4206-4211. DOI: 10.1016/j.ijleo.2015.08.034.
- Mazzoleni, P., Zappa, E., Matta, F. and Sutton, M.A. (2015), "Thermo-mechanical toner transfer for high-quality digital image correlation speckle patterns", Opt. Laser. Eng., 75, 72-80. DOI: 10.1016/j.optlaseng.2015.06.009.
- Pan, B., Xie, H., Wang, Z., Qian, K. and Wang, Z. (2008), "Study on subset size selection in digital image correlation for speckle patterns", Opt. Express, 16(10), 7037-7048. DOI: 10.1364/OE.16.007037.
- Pan, B., Asundi, A., Xie, H. and Gao, J. (2009), "Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements", Opt. Laser. Eng., 47(7-8), 865-874. DOI: 10.1016/j.optlaseng.2008.10.014.
- Pan, B., Lu, Z. and Xie, H. (2010), "Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation", Opt. Laser. Eng., 48(4), 469-477. DOI: 10.1016/j.optlaseng.2009.08.010.
- Reu, P. (2014), "All about speckles: speckle size measurement", Exp. Techniques, 38(6), 1-2. DOI: 10.1111/ext.12110.
- Reu, P. (2015), "All about speckles: edge sharpness", Exp. Techniques, 39(2), 1-2. DOI: 10.1111/ext.12139.
- Su, Y., Zhang, Q., Xu, X. and Gao, Z. (2016), "Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors", Opt. Laser. Eng., 86, 132-142. DOI: 10.1016/j.optlaseng.2016.05.019.
- Sun, Y.F. and Pang, J.H. (2007), "Study of optimal subset size in digital image correlation of speckle pattern images", Opt. Laser. Eng., 45(9), 967-974. DOI: 10.1016/j.optlaseng.2007.01.012.
- Wang, Y.Q., Sutton, M.A., Bruck, H.A. and Schreier, H.W. (2009), "Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements", Strain, 45(2), 160-178. DOI: 10.1111/j.1475-1305.2008.00592.x.
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M., and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.
- Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016b), "Vision-based structural displacement measurement: system performance evaluation and influence factor analysis", Measurement, 88, 372-384. DOI: 10.1016/j.measurement.2016.01.024.
- Yu, H., Guo, R., Xia, H., Yan, F., Zhang, Y. and He, T. (2014), "Application of the mean intensity of the second derivative in evaluating the speckle patterns in digital image correlation", Opt. Laser. Eng., 60, 32-37. DOI: 10.1016/j.optlaseng.2014.03.015.
- Zhou, P. and Goodson, K.E. (2001), "Subpixel displacement and deformation gradient measurement using digital image/speckle correlation", Opt. Eng., 40(8), 1613-1621. DOI: 10.1117/1.1387992.