Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Adamczyk, M., Liberadzki, P. and Sitnik, R. (2018), "Temperature compensation method for digital cameras in 2D and 3D measurement applications", Sensors, 18(11), 3685. DOI: 10.3390/s18113685.
- Feng, D. and Feng, M.Q. (2017), "Experimental validation of cost-effective vision-based structural health monitoring", Mech. Syst. Signal Pr., 88, 199-211. DOI: 10.1016/j.ymssp.2016.11.021.
- Handel, H. (2008), "Compensation of thermal errors in vision based measurement systems using a system identification approach", Int. Conf. Sign. Pro., 1329-1333. DOI: 10.1109/ICOSP.2008.4697377.
- Handel, H. (2009), "Analyzing the influences of camera warm-up effects on image acquisition", IPSJ. T. Comput. Vis. Appl., 1, 12-20. DOI: 10.1007/978-3-540-76390-1_26.
- Kruth, J., Zhou, L. and Vanherck, P. (2003), "Thermal error analysis and compensation of an LED-CMOS camera 3D measuring system", 3(3).
- Lee, J.J. and Shinozuka, M. (2006), "Real-time displacement measurement of a flexible bridge using digital image processing techniques", Exp. Mech., 46(1), 105-114. DOI: 10.1007/s11340-006-6124-2.
- Pan, B. (2018), "Thermal error analysis and compensation for digital image/volume correlation", Opt. Lasers Eng., 101, 1-15. DOI: 10.1016/j.optlaseng.2017.09.015.
- Pan, B., Yu, L. and Wu, D. (2013), "High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: error analysis and experimental verification", Exp. Mech., 53(9), 1719-1733. DOI: 10.1007/s11340-013-9774-x
- Pan, B., Shi, W. and Lubineau, G. (2015), "Effect of camera temperature variations on stereo-digital image correlation measurements", Appl. Opt., 54(34), 10089. DOI: 10.1364/AO.54.010089.
- Pan, B., Tian, L. and Song, X. (2016), "Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation", NDT. E. Int., 79, 73-80. DOI: 10.1016/j.ndteint.2015.12.006.
- Pan, B. (2018), "Digital image correlation for surface deformation measurements: historical developments, recent advances and future goals", Meas. Sci. Technol., 29(8), 082001. DOI: 10.1088/1361-6501/aac55b.
- Tian, L. and Pan, B. (2016), "Remote bridge deflection measurement using an advanced video deflectometer and actively illuminated LED targets", Sensors, 16(9). DOI: 10.3390/s16091344. DOI: 10.3390/s16091344.
- Yoneyama, S. and Ueda, H. (2012), "Bridge deflection measurement using digital image correlation with camera movement correction", Mater. Trans., 2(53), 285-290. DOI: 10.2320/matertrans.I-M2011843.
- Ye, X.W., Ni, Y.Q. and Wai, T.T. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart. Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.
- Ye, X.W., Yi, T. H. and Dong, C. Z. (2015), "Multi-point displacement monitoring of bridges using a vision-based approach", Wind Struct., 20(2), 315-326. https://doi.org/10.12989/was.2015.20.2.315.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016), "A review of machine vision-based structural health monitoring: methodologies and applications", J. Sens., 2016, 1-10. DOI: 10.1155/2016/7103039.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart. Struct. Syst., 17(6), 935-956. DOI: 10.12989/sss.2016.17.6.935.
- Yu, L. and Lubineau, G. (2019), "Modeling of systematic errors in stereo-digital image correlation due to camera self-heating", Scientific reports, 9(1), 6567. DOI: 10.1038/s41598-019-43019-7.
- Yu, Q., Chao, Z. and Jiang, G. (2014), "The effects of temperature variation on videometric measurement and a compensation method", Image Vis. Comput., 32(12), 1021-1029. DOI: 10.1016/j.imavis.2014.08.011.
- Zhou, H.F., Zheng, J.F. and Xie, Z.L. (2017), "Temperature effects on vision measurement system in long-term continuous monitoring of displacement", Renew. Energy, 114, 968-983. DOI: 10.1016/j.renene.2017.07.104.
Cited by
- Cost-Effective and Ultraportable Smartphone-Based Vision System for Structural Deflection Monitoring vol.2021, 2019, https://doi.org/10.1155/2021/8843857