Acknowledgement
Supported by : Research Grants Council of Hong Kong
References
- Casciati F., Casciati S., Faravelli L. and Marzi A. (2011), "Fatigue damage accumulation in a Cu-based shape memory alloy", CMC., 23(3), 287-306.
- Casciati, F., Faravelli, L. and Petrini, L. (1998), "Energy dissipation in shape memory alloy devices", Comput. Aided Civil Infrastruct. Eng., 13, 433-442. DOI: 10.1111/0885-9507.00121.
- Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Performance of a base isolator with shape memory alloy bars", Earthq. Eng. Eng. Vib., 6, 401-4088. DOI:10.1007/s11803-007-0787-2.
- Casciati, S. and Faravelli, L. (2008), "Structural components in shape memory alloy for localized energy dissipation", Comp. Struct., 86(3-5), 330-339. DOI: 10.1016/j.compstruc.2007.01.037.
- Casciati, S., Faravelli, L. and Vece, M. (2017), "Investigation on the fatigue performance of Ni-Ti thin wires", Struct. Control Health Monit., 24(1), Article Number: e1855. DOI: 10.1002/stc.1855.
- Casciati, S., Torra, V. and Vece, M. (2018), "Local effects induced by dynamic load self-heating in NiTi wires of shape memory alloys", Struct. Control Health Monit., 25(4), Article Number: e2134. DOI: 10.1002/stc.2134.
- Pan, B., Qian, K., Xie, H. and Asundi, A. (2009), "Two-dimension digital image correlation for in-plane displacement and strain measurement: a review", Meas. Sci. Technol., 20, 062001. DOI: 10.1088/0957-0233/20/6/062001.
- Pan, B., Yu, L.P. and Zhang, Q.B. (2018), "Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement", Sci. China-Technol. Sci., 61(1), 2-20. DOI:10.1007/s11431-017-9090-x.
- Sony, S., Laventure, S. and Sadhu, A. (2019), "A literature review of next-generation smart sensing technology in structural health monitoring", Struct. Control Health Monit., 26, e2321. DOI: 10.1002/stc.2321.
- Wang B. and Zhu S. (2018), "Superelastic SMA U-shaped dampers with self-centering functions", Smart Mater. Struct., 27 055003 (14pp). DOI:10.1088/1361-665X/aab52d.
- Wu, L.J., Casciati, F. and Casciati, S. (2014), "Dynamic testing of a laboratory model via vision-based sensing", Eng. Struct., 60, 113-125. DOI: 10.1016/j.engstruct.2013.12.002.
- Wu, L.J. and Casciati, F. (2014), "Local positioning systems versus structural monitoring: a review", Struct. Control Health Monit., 21, 1209-1221. DOI:10.1002/stc.1643.
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification", Smart Struct. Syst., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585.
- Zhao, X. and Zhang, Y. (2019), "Bolt loosening angle detection technology using deep learning", Struct. Control Health Monit., 26(1): e2291. DOI: 10.1002/stc.2292.
Cited by
- Multi‐output modal identification of landmark suspension bridges with distributed smartphone data: Golden Gate Bridge vol.27, pp.10, 2020, https://doi.org/10.1002/stc.2576