DOI QR코드

DOI QR Code

Development of monocular video deflectometer based on inclination sensors

  • Wang, Shuo (Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University) ;
  • Zhang, Shuiqiang (School of Engineering, Huzhou university) ;
  • Li, Xiaodong (Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University) ;
  • Zou, Yu (Wuhan Sinorock Technology Co., Ltd) ;
  • Zhang, Dongsheng (Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University)
  • 투고 : 2019.05.31
  • 심사 : 2019.08.26
  • 발행 : 2019.11.25

초록

The video deflectometer based on digital image correlation is a non-contacting optical measurement method which has become a useful tool for characterization of the vertical deflections of large structures. In this study, a novel imaging model has been established which considers the variations of pitch angles in the full image. The new model allows deflection measurement at a wide working distance with high accuracy. A monocular video deflectometer has been accordingly developed with an inclination sensor, which facilitates dynamic determination of the orientations and rotation of the optical axis of the camera. This layout has advantages over the video deflectometers based on theodolites with respect to convenience. Experiments have been presented to show the accuracy of the new imaging model and the performance of the monocular video deflectometer in outdoor applications. Finally, this equipment has been applied to the measurement of the vertical deflection of Yingwuzhou Yangtze River Bridge in real time at a distance of hundreds of meters. The results show good agreement with the embedded GPS outputs.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Brown, C.J., Roberts, G.W., Atkins, C., Meng, X. and Colford, B. (2015), "Deflections and frequency responses of the forth road bridge measure by GPS", Thomas Telford, 2015, 479-486.
  2. Cai, Y.L., Yang, S.L., Wang, Y.H., Fu, S.H. and Zhang, Q.C. (2016), "Characterization of the deformation behaviors associated with the serrated flow of a 5456 al-based alloy using two orthogonal digital image correlation systems", Mater. Sci. Eng. A., 664, 155-164. DOI: 10.1016/j.msea.2016.04.003.
  3. De, R.G., Xia, H., Zhang, N. and Zhang, H. (2003),"Experimental study of a prestressed trough bridge for high speed railway", Eng. Mech., 20(6), 99-105. DOI: 10.1007/s11769-003-0044-1.
  4. Feng, D., Feng, M.Q., Ozer, E. and Fukuda, Y. (2015), "A vision-based sensor for noncontact structural, displacement measurement", Sensors, 2015(15), 16557-16575. DOI:10.3390/s150716557.
  5. Feng, M.Q., Asce, F., Fukuda, Y., Feng, D. and Mizuta, M. (2015), "Nontarget vision sensor for remote measurement of bridge dynamic response", J. Bridge Eng., 20(12), 04015023. DOI: 10.1061/(ASCE)BE.1943-5592.0000747.
  6. Gao, Y., Cheng, T., Su, Y., Xu, X., Zhang, Y. and Zhang, Q. (2015), "High-efficiency and high-accuracy digital image correlation for three-dimensional measurement", Opt. Lasers Eng., 65, 73-80. DOI: 10.1016/j.optlaseng.2014.05.013.
  7. Hidayat, I., Suangga, M. and Maulana, M.R. (2018), "The effect of load position to the accuracy of deflection measured with LVDT sensor in I-girder bridge", ,Int. Conf. Eng. Develop., Kanazawa, Japan, January. DOI: 10.1088/1755-1315/109/1/012024.
  8. Lin, M.W. (2006), "Structural deflection monitoring using an embedded ETDR distributed strain sensor", J. Intel. Mat. Syst. Str., 17(5), 423-430. DOI: 10.1177/1045389X06058631.
  9. Luo, L. and Feng, M.Q. (2017), "Vision based displacement sensor with heat haze filtering capability", P. Int. Workshop Struct. Health Monit., Liverpool, May.
  10. Luo, L., Feng, M.Q. and Wu, Z.Y. (2018), "Robust vision sensor for multi-point displacement monitoring of bridges in the field", Eng. Struct., 163, 255-266. DOI: 10.1016/j.engstruct.2018.02.014.
  11. Liu, Y., Zhang, Q., Su, Y., Gao, Z., Fang, Z. and Wu, S. (2019), "The mechanism of strain influence on interpolation induced systematic errors in digital image correlation method", Opt. Lasers Eng., 121, 323-333. DOI: 10.1016/j.optlaseng.2019.04.023.
  12. Merkle, W.J. and Myers, J.J. (2004), "Use of the total station for load testing of retrofitted bridges with limited access", Smart Mater. Struct., SanDiego, U.S., March. DOI: 10.1117/12.539992.
  13. Martins, L.L., Rebordao, J.M. and Ribeiro, A.S. (2013), "Conception and development of an optical methodology applied to long-distance measurement of suspension bridges dynamic displacement", Int. Measurement Confeder., Genoa, September. DOI: 10.1088/1742-6596/459/1/012055.
  14. Martins, L.L., Rebordao, J.M. and Ribeiro, A.S. (2015), "Structural observation of long-span suspension bridges for safety assessment: Implementation of an optical displacement measurement system", IMEKO Sym. Measurement Sci. Safe. Sec., Funchal, September. DOI: 10.1088/1742-6596/588/1/012004.
  15. Nassif, H.H., Gindy, M. and Davis, J.(2005), "Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration", NDTE. Int., 38(3), 213-218. DOI: 10.1016/j.ndteint.2004.06.012.
  16. Pan, B., Li, K. and Tong, W. (2013), "Fast, robust and accurate digital image correlation calculation without redundant computations", Exp. Mech., 53(7), 1277-1289. DOI: 10.1007/s11340-013-9717-6.
  17. Psimoulis, P.A. and Stiros, S.C. (2013), "Measuring deflections of a short-span railway bridge using a robotic total station", J. Bridge Eng., 18(2), 182-185. DOI: 10.1061/(ASCE)BE.1943-5592.0000334.
  18. Pan, B., Tian, L. and Song, X. (2016), "Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation", NDTE. Int., 2016(79), 73-80. DOI: 10.1016/j.ndteint.2015.12.006.
  19. Su, Y., Zhang, Q., Xu, X. and Gao, Z. (2016), "Quality assessment of speckle patterns for dic by consideration of both systematic errors and random errors", Opt. Lasers Eng., 86, 132-142. DOI: 10.1016/j.optlaseng.2016.05.019.
  20. Su, Y., Zhang, Q., Xu, X., Gao, Z. and Wu, S. (2018), "Interpolation bias for the inverse compositional gauss-newton algorithm in digital image correlation", Opt. Lasers Eng., 100, 267-278. DOI: 10.1016/j.optlaseng.2017.09.013.
  21. Tian, L. and Pan, B. (2016), "Remote bridge deflection measurement using an advanced video deflectometer and actively illuminated led targets", Sensors, 16(9), 1344. DOI: 10.3390/s16091344.
  22. Tian, Y. and Fang, M. (2016),"A time synchronization method for inertial sensor and visual sensor", P.Intell. Control Autom., Guilin, June. DOI: 10.1109/WCICA.2016.7578516.
  23. Tang, X., Li, X., Robert, W.G. and Hancock, M.C. (2019),"1 Hz GPS satellites clock correction estimations to support high-rate dynamic PPP GPS applied on the Severn suspension bridge for deflection detection", GPS Solut., 2019(2), 23-28. DOI: 10.1007/s10291-018-0813-z.
  24. Wang, J., Meng, X., Qin, C. and Yi, J.(2016),"Vibration frequencies extraction of the forth road bridge using high sampling GPS data", Shock Vib., 2016(2), 1-18. DOI: 10.1155/2016/9807861.
  25. Wu, R., Kong, C., Li, K. and Zhang, D. (2016), "Real-time digital image correlation for dynamic strain measurement", Exp. Mech., 56(5), 833-843. DOI: 10.1007/s11340-016-0133-6.
  26. Xu, X., Su, Y. and Zhang, Q. (2017), "Theoretical estimation of systematic errors in local deformation measurements using digital image correlation", Opt. Lasers Eng., 88, 265-279. DOI: 10.1016/j.optlaseng.2016.08.016.
  27. Xu, Y., Brownjohn, J. and Kong, D. (2018), "A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge", Struct. Control Health Monit., 25(5), e2155. DOI: 10.1002/stc.2155.
  28. Yoneyama, S. (2007), "Bridge deflection measurement using digital image correlation", J. JSEM., 7(1), 34-40. DOI: 10.1111/j.1747-1567.2006.00132.x.
  29. Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart. Struct. Syst., 12(3-4), 363-379. http://dx.doi.org/10.12989/sss.2013.12.3_4.363.
  30. Ye, X.W., Yi, T.H., Dong, C.Z., Liu, T. and Bai, H. (2015), "Multi-point displacement monitoring of bridges using a vision-based approach", Wind Struct., 20(2), 315-326. http://dx.doi.org/10.12989/was.2015.20.2.315.
  31. Ye, X.W., Dong, C.Z. and Liu, T. (2016), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart. Struct. Syst., 17(6), 935-956. http://dx.doi.org/10.12989/sss.2016.17.6.935.
  32. Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016), "Vision-based structural displacement measurement: system performance evaluation and influence factor analysis", Measurement, 2016 (88), 372-384. DOI: 10.1016/j.measurement.2016.01.024.