DOI QR코드

DOI QR Code

Visualization and classification of hidden defects in triplex composites used in LNG carriers by active thermography

  • Hwang, Soonkyu (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jeon, Ikgeun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Han, Gayoung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Sohn, Hoon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yun, Wonjun (Advanced Research Center, Korea Shipbuilding and Offshore Engineering Co. Ltd.)
  • Received : 2019.07.26
  • Accepted : 2019.08.31
  • Published : 2019.12.25

Abstract

Triplex composite is an epoxy-bonded joint structure, which constitutes the secondary barrier in a liquefied natural gas (LNG) carrier. Defects in the triplex composite weaken its shear strength and may cause leakage of the LNG, thus compromising the structural integrity of the LNG carrier. This paper proposes an autonomous triplex composite inspection (ATCI) system for visualizing and classifying hidden defects in the triplex composite installed inside an LNG carrier. First, heat energy is generated on the surface of the triplex composite using halogen lamps, and the corresponding heat response is measured by an infrared (IR) camera. Next, the region of interest (ROI) is traced and noise components are removed to minimize false indications of defects. After a defect is identified, it is classified as internal void or uncured adhesive and its size and shape are quantified and visualized, respectively. The proposed ATCI system allows the fully automated and contactless detection, classification, and quantification of hidden defects inside the triplex composite. The effectiveness of the proposed ATCI system is validated using the data obtained from actual triplex composite installed in an LNG carrier membrane system.

Keywords

Acknowledgement

Supported by : Ministry of Land, Infrastructure and Transport

References

  1. Agius, S., Magniez, K. and Fox, B. (2013), "Cure behaviour and void development within rapidly cured out-of-autoclave composites", Comps. Part B-Eng., 47, 230-237. DOI:10.1016/j.compositesb.2012.11.020.
  2. BuSSe, G., Wu, D. and Karpen, W. (1992), "Thermal wave imaging with phase sensitive modulated thermography", J. Appl. Phys., 71(8), 3962-3965. DOI: 10.1063/1.351366.
  3. Cengel, Y.A., Cimbala, J.M., Turner, R.H. and Kanoglu, M. (2012), Fundamentals of thermal-fluid sciences (Vol. 3):McGraw-Hill Higher Education Boston.
  4. Choi, M., Kang, K., Park, J., Kim, W. and Kim, K. (2008), "Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography", Ndt &E Int., 41(2), 119-124. DOI: 10.1016/j.ndteint.2007.08.006.
  5. Costa, M.L., De Almeida, S.F.M. and Rezende, M.C. (2001), "The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates", Comps. Sci. Technol., 61(14), 2101-2108. DOI: 10.1016/S0266-3538(01)00157-9.
  6. Duda, R.O. and Hart, P.E. (1971), "Use of the Hough transformation to detect lines and curves in pictures", Commun. Acm., 15(1), 11-15. DOI: 10.1145/361237.361242.
  7. IGU. (2018), IGU 2018 World LNG Report. In: International gas union.
  8. IGU. (2019), IGU 2019 World LNG Report. In: International gas union.
  9. Kim, B.G. (2008), "Leakage characteristics of the glass fabric composite barriers of LNG ships", Compos. Struct., 86(1-3), 27-36. DOI: 10.1016/j.compstruct.2008.03.021.
  10. Lee, S., Lim, H.J., Sohn, H., Yun, W. and Song, E. (2017), "Autonomous mobile lock-in thermography system for detecting and quantifying voids in liquefied natural gas cargo tank second barrier", Struct. Health Monit., 16(3), 276-290. DOI: 10.1177/1475921716651810.
  11. Li, H., Li, J., Yun, X., Liu, X. and Fok, A.S.L. (2011),"Nondestructive examination of interfacial debonding using acoustic emission", Dent. Mater., 27(10), 964-971. DOI:10.1016/j.dental.2011.06.002.
  12. Maguire, J.R. (2011), "Acoustic emission monitoring of composite containment systems", J. Phys., 305(1). DOI: 10.1088/1742-6596/305/1/012044.
  13. Meola, C. and Carlomagno, G.M. (2004), "Recent advances in the use of infrared thermography", Meas. Sci. Technol., 15(9), R27. https://doi.org/10.1088/0957-0233/15/9/R01
  14. Mokhatab, S., Mak, J.Y., Valappil, J.V. and Wood, D.A. (2013). Handbook of liquefied natural gas: Gulf Professional Publishing.
  15. Mukhopadhyay, P. and Chaudhuri, B.B. (2015), "A survey of Hough Transform", Pattern Recogn., 48(3), 993-1010. DOI:10.1016/j.patcog.2014.08.027.
  16. Nadernejad, E., Sharifzadeh, S. and Hassanpour, H. (2008), "Edge detection techniques: Evaluations and comparisons", Appl. Math. Sci., 2(31), 1507-1520.
  17. Olivier, P., Cottu, J. and Ferret, B. (1995), "Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates", Compos., 26(7), 509-515. DOI:10.1016/0010-4361(95)96808-J.
  18. Pospisil, J., Charvat, P., Arsenyeva, O., Klimes, L., Spilacek, M. and Klemes, J.J. (2019), "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage", Renew. Sust. Energ. Rev., 99, 1-15. DOI: 10.1016/j.rser.2018.09.027.
  19. Song, H., Lim, H. J., Lee, S., Sohn, H., Yun, W. and Song, E. (2015), "Automated detection and quantification of hidden voids in triplex bonding layers using active lock-in thermography", Ndt & E Int., 74, 94-105. DOI:doi.org/10.1016/j.ndteint.2015.05.004.
  20. Technigaz, G. (2012), Bonding handbook: Saint-Remy-les-Chevreuse: Gaztransport&Technigaz.
  21. Yang, J., Choi, J., Hwang, S., An, Y.K. and Sohn, H. (2016), "A reference-free micro defect visualization using pulse laser scanning thermography and image processing", Meas. Sci. Technol., 27(8), 085601. DOI: 10.1088/0957-0233/27/8/085601.
  22. YonathanSunarsa, T., Aryan, P., Jeon, I., Park, B., Liu, P. and Sohn, H. (2017), "A reference-free and non-contact method for detecting and imaging damage in adhesive-bonded structures using air-coupled ultrasonic transducers", Materials, 10(12), 1402. DOI: 0.3390/ma10121402. https://doi.org/10.3390/ma10121402
  23. Zhu, H.Y., Li, D.H., Zhang, D.X., Wu, B.C. and Chen, Y.Y. (2009), "Influence of voids on interlaminar shear strength of carbon/epoxy fabric laminates", Trans. Nonferrous Met. Soc. China, 19, s470-s475. DOI: 10.1016/S1003-6326(10)60091-X.