DOI QR코드

DOI QR Code

Creep of stainless steel under heat flux cyclic loading (500-1000℃) with different mechanical preloads in a vacuum environment using 3D-DIC

  • Su, Yong (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China) ;
  • Pan, Zhiwei (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China) ;
  • Peng, Yongpei (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China) ;
  • Huang, Shenghong (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China) ;
  • Zhang, Qingchuan (CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China)
  • Received : 2019.06.11
  • Accepted : 2019.08.21
  • Published : 2019.12.25

Abstract

In nuclear fusion reactors, the key structural component (i.e., the plasma-facing component) undergoes high heat flux cyclic loading. To ensure the safety of fusion reactors, an experimental study on the temperature-induced creep of stainless steel under heat flux cyclic loading was performed in the present work. The strains were measured using a stereo digital image correlation technique (3D-DIC). The influence of the heat haze was eliminated, owing to the use of a vacuum environment. The specimen underwent heat flux cycles ($500^{\circ}C-1000^{\circ}C$) with different mechanical preloads (0 kN, 10 kN, 30 kN, and 50 kN). The results revealed that, for a relatively large preload (for example, 50 kN), a single temperature cycle can induce a residual strain of up to $15000{\mu}{\varepsilon}$.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Chinese Academy of Sciences, Central Universities

References

  1. Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T. and Van Hemelrijck, D. (2016), "Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation", Smart. Struct. Syst. 17(1), 91-105. https://doi.org/10.12989/sss.2016.17.1.091.
  2. Arnoux, G., Bazylev, B., Lehnen, M., Loarte, A., Riccardo, V., Bozhenkov, S., Devaux, S., Eich, T., Fundamenski, W., Hender, T., Huber, A., Jachmich, S., Kruezi, U., Sergienko, G. and Thomsen, H. (2011). "Heat load measurements on the JET first wall during disruptions", J. Nucl. Mater. 415(1), S817-S820. DOI: 10.1016/j.jnucmat.2010.11.042.
  3. Chen, X.M., Liu, Z.W. and Yang Y. (2014). "Residual stress evolution regularity in thermal barrier coatings under thermal shock loading", Theor. Appl. Mech. Lett. 4(2), 021009. DOI:10.1063/2.1402109.
  4. Chen, Z.N., Shao, X.X., Xu, X.Y. and He, X.Y. (2018). "Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency", Appl. Opt. 57(4), 884-893. DOI: 10.1364/AO.57.000884.
  5. Cheng, T., Zhang, Q.C., Wu, X.P., Chen, D.P and Jiao, B.B. (2008). "Uncooled infrared imaging using a substrate-free focalplane array", IEEE Electron Device Lett. 29(11), 1218-1221. DOI: 10.1109/LED.2008.2004568.
  6. Cowley, S.C. (2016), "The quest for fusion power", Nat. Phys., 12, 384. DOI: 10.1038/nphys3719.
  7. Gao, Y., Cheng, T., Su, Y., Xu, X.H., Zhang, Y. and Zhang, Q.C. (2015), "High-efficiency and high-accuracy digital image correlation for three-dimensional measurement", Opt. Lasers Eng., 65, 73-80. DOI: 10.1016/j.optlaseng.2014.05.013.
  8. Gao, Z.R., Xu, X.H., Su, Y. and Zhang, Q.C. (2016), "Experimental analysis of image noise and interpolation bias in digital image correlation", Opt. Lasers Eng., 81, 46-53. DOI:10.1016/j.optlaseng.2016.01.002.
  9. Gao, Z.R., Zhang, Q.C., Su, Y. and Wu, S.Q. (2017), "Accuracy evaluation of optical distortion calibration by digital image correlation", Opt. Lasers Eng., 98, 143-152. DOI:10.1016/j.optlaseng.2016.01.002.
  10. Grant, B.M.B., Stone, H.J., Withers, P.J. and Preuss, M. (2009), "High-temperature strain field measurement using digital image correlation", J. Strain Anal. Eng. Des., 44(4), 263-271. DOI:10.1243/03093247JSA478.
  11. Guo, B.Q., Wang, H.X., Xie, H.M. and Chen, P.W. (2014), "Elastic constants characterization on graphite at $500^{\circ}C$ by the virtual fields method", Theor. Appl. Mech. Lett., 4(2), 021010. DOI:10.1063/2.1402110.
  12. Gupta, S., Parameswaran, V., Sutton, M.A. and Shukla, A. (2014). "Study of dynamic underwater implosion mechanics using digital image correlation", Proc. R. Soc. A-Math. Phys. Eng. Sci., 470(2172), 20140576-20140576. DOI:10.1098/rspa.2014.0576.
  13. Hu, Y.J., Wang, Y.J., Chen, J.B. and Zhu, J.M. (2018a), "A new method of creating high-temperature speckle patterns and its application in the determination of the high-temperature mechanical properties of metals", Exp. Tech., 42(5), 523-532. DOI: 10.1007/s40799-018-0256-z.
  14. Hu, Y.J., Liu, F., Zhu, W.D. and Zhu, J.M. (2018b). "Thermally coupled constitutive relations of thermoelastic materials and determination of their material constants based on digital image correlation with a laser engraved speckle pattern", Mech. Mat. 121, 10-20. DOI: 10.1016/j.mechmat.2018.02.002.
  15. Knaster, J., Moeslang, A. and Muroga, T. (2016), "Materials research for fusion", Nat. Phys., 12, 424. DOI:10.1038/NPHYS3735.
  16. Linke, J., Akiba, M., Bolt, H., Breitbach, G., Duwe, R., Makhankov, A., Ovchinnikov, I., Rodig, M. and Wallura, E. (1997), "Performance of beryllium, carbon, and tungsten under intense thermal fluxes", J. Nucl. Mater., 241, 1210-1216. DOI:10.1016/S0022-3115(97)80222-X.
  17. Liu, Y., Zhang, Q.C., Su, Y., Gao, Z.R., Fang, Z. and Wu, S.Q. (2019), "The mechanism of strain influence on interpolation induced systematic errors in digital image correlation method", Opt. Lasers Eng., 121, 323-333. DOI:10.1016/j.optlaseng.2019.04.023.
  18. Lv, Z.Q., Xu, X.H., Yan, T.H., Cai, Y.L., Su, Y. and Zhang, Q.C. (2018), "High-accuracy optical extensometer based on coordinate transform in two-dimensional digital image correlation", Opt. Lasers Eng., 100, 61-70. DOI:10.1016/j.opdaseng.2017.06.010.
  19. Pan, B., Wu, D.F., Wang, Z.Y. and Xia, Y. (2011), "Hightemperature digital image correlation method for full-field deformation measurement at $1200^{\circ}C$", Meas. Sci. Technol., 22(1), 015701. DOI: 10.1088/0957-0233/22/1/015701.
  20. Pan, Z., Chen, W., Jiang, Z.Y., Tang, L.Q., Liu. Y.P. and Liu, Z.J. (2016), "Performance of global look-up table strategy in digital image correlation with cubic B-spline interpolation and bicubic interpolation", Theor. Appl. Mech. Lett., 6(3), 126-130. DOI:10.1016/j.taml.2016.04.003.
  21. Romanelli, F., Barabaschi, P., Borba, D., Federici, G., Horton, L., Neu, R., Stork, D. and Zohm, H (2012), "Fusion electricity: a roadmap to the realization of fusion energy".
  22. Sakanashi, Y., Gungor, S., Forsey, A.N. and Bouchard, P. J (2016), "Measurement of creep deformation across welds in 316h stainless steel using digital image correlation", Exp. Mech., 57(2), 231-244. DOI: 10.1007/s11340-016-0245-z.
  23. Shao, X.X., Dai, X.J. and He, X.Y. (2015), "Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation", Opt. Lasers Eng., 71, 9-19. DOI: 10.1016/j.optlaseng.2015.03.005.
  24. Song, Y.T., Wu, S.T., Li, J.G., Wan, B.N., Wan, Y.X., Fu, P., Ye. M.Y., Zheng, J.X., Lu, K., Gao, X.G., Liu. S.M., Liu, X.F., Lei, M.Z., Peng, X.B. and Chen, Y. (2014), "Concept design of CFETR Tokamak machine", IEEE T. Plasma Sci., 42(3), 503-509. DOI: 10.1109/TPS.2014.2299277.
  25. Su, Y. (2019), "Creep of stainless steel under heat flux cyclic loading (500-$1000^{\circ}C$) using 3D-DIC", figshare [retrieved 17 Jul 2019], DOI: 10.6084/m9.figshare.8940341.v1.
  26. Sutton, M.A., Yan, J.H., Tiwari, V., Schreier, H.W. and Orteu, J.J. (2008), "The effect of out-of-plane motion on 2D and 3D digital image correlation measurements", Opt. Lasers Eng., 46(10), 746-757. DOI: 10.1016/j.optlaseng.2008.05.005.
  27. Sutton, M.A., Schreier, H.W. and Orteu, J.J. (2009), Image Correlation for Shape, Motion and Deformation Measurements:Basic Concepts, Theory and Applications, Springer Publishing Company, Incorporated. DOI: 10.1007/978-0-387-78747-3.
  28. Valeri, G., Koohbor, B., Kidane, A. and Sutton, M.A. (2017). "Determining the tensile response of materials at high temperature using DIC and the Virtual Fields Method", Opt. Lasers Eng., 91, 53-61. DOI: 10.1016/j.optlaseng.2016.11.004.
  29. Wang, S., Yao, X.F., Su, Y.Q. and Ma, Y.J. (2015). "High temperature image correction in DIC measurement due to thermal radiation", Meas. Sci. Technol. 26(9), 095006. DOI:10.1088/0957-0233/26/9/095006.
  30. Wang, W., Xu, C.H., Jin, H., Meng, S.H., Zhang, Y.M. and Xie, H.W. (2017). "Measurement of high temperature full-field strain up to $2000^{\circ}C$ using digital image correlation", Meas. Sci. Technol., 28(3), 035007. DOI: 10.1088/1361-6501/aa56d1.
  31. Wirtz, M., Linke, J., Pintsuk, G., De Temmerman, G. and Wright, G.M. (2013), "Thermal shock behaviour of tungsten after high flux H-plasma loading", J. Nucl. Mater., 443(1-3), 497-501. DOI: 10.1016/j.jnucmat.2013.08.002.
  32. Wu, D.F., Lin, L.J., Ren, H.Y., Zhu, F.H. and Wang, H.T. (2019), "High-temperature deformation measurement of the heated front surface of hypersonic aircraft component at $1200^{\circ}C$ using digital image correlation", Opt. Lasers Eng. 122: 184-194. DOI: 10.1016/j.optlaseng.2019.06.006.
  33. Wu, J.X., Cheng, T., Zhang, Q.C., Zhang, Y., Mao, L., Gao, J., Chen, D.P. and Wu X.P. (2013). "Research of infrared imaging at atmospheric pressure using a substrate-free focal plane array", Chin. Phys. Lett., 30(1), 010701. DOI: 10.1088/0256-307X/30/1/010701.
  34. Xiong, Z.M., Zhang, Q.C., Gao, J., Wu, X.P., Chen, D.P. and Jiao, B.B. (2007), "The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system", J. Appl. Phys., 102(11), 113524. DOI:10.1063/1.2822333.
  35. Xu, X.H., Su, Y., Cai, Y.L., Cheng, T. and Zhang, Q.C. (2015). "Effects of various shape functions and subset size in local deformation measurements using DIC", Exp. Mech., 55(8), 1575-1590. DOI: 10.1007/s11340-015-0054-9.
  36. Xu, X.H., Zhang, Q.C., Su, Y., Cai, Y.L., Xue, W.W., Gao, Z.R., Xue, Y, Lv, Z.Q. and Fu, S.H. (2017a), "High-accuracy, highefficiency compensation method in two-dimensional digital image correlation", Exp. Mech., 57(6), 831-846. DOI:10.1007/s11340-017-0274-2.
  37. Xu, X.H., Su, Y. and Zhang, Q.C. (2017b), "Theoretical estimation of systematic errors in local deformation measurements using digital image correlation", Opt. Lasers Eng., 88, 265-279. DOI:10.1016/j.optlaseng.2016.08.016.
  38. Xue, Y., Su, Y., Zhang, C., Xu, X.H., Gao, Z.R., Wu, S.Q., Zhang, Q.C. and Wu, X.P. (2017), "Full-field wrist pulse signal acquisition and analysis by 3D digital image correlation", Opt. Lasers Eng., 98, 76-82. DOI: 10.1016/j.optlaseng.2017.05.018.
  39. Yan, T.H., Su, Y. and Zhang, Q.C. (2018), "Precise 3D shape measurement of three-dimensional digital image correlation for complex surfaces", Sci. China-Technol. Sci., 61(1), 68-73. DOI:10.1007/s11431-017-9125-7.
  40. Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart. Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.
  41. Ye, X.W., Yi, T.H., Wen, C. and Su, Y.H. (2015), "Reliabilitybased assessment of steel bridge deck using a mesh-insensitive structural stress method", Smart. Struct. Syst., 16(2), 367-382. https://doi.org/10.12989/sss.2015.16.2.367.
  42. Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart. Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.
  43. Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Force monitoring of steel cables using vision-based sensing technology:methodology and experimental verification", Smart. Struct. Syst., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585.
  44. Ye, X.W., Yi, T.H., Su, Y.H., Liu, T. and Chen, B. (2017), "Strainbased structural condition assessment of an instrumented arch bridge using FBG monitoring data", Smart. Struct. Syst., 20(2), 139-150. https://doi.org/10.12989/sss.2017.20.2.139.
  45. Zhang, X., Su, Y., Gao, Z.R., Xu, T., Ding, X.H., Yu, Q.F. and Zhang, Q.C. (2018). "High-accuracy three-dimensional shape measurement of micro solder paste and printed circuits based on digital image correlation", Opt. Eng., 57(5), 054101. DOI:10.1117/1.OE.55.5.054101.