References
- ACSE. (2017), "Report card for America's infrastructure", New York, NY, USA. URL:https://www.infrastructurereportcard.org/cat-item/bridges/
- Arinaldi, A., Jaka, A.P. and Arlan, A.G. (2018), "Detection and classification of vehicles for traffic video analytics", Pro. C. Sci., 144(1), 259-268. DOI: 10.1016/J.PROCS.2018.10.527.
- Cavaioni, M. (2018), "Deep learning series: Convolutional neural networks - machine learning bites - medium", Medium/Machine Learning. 2018. URL:https://medium.com/machine-learning-bites/deeplearningseries-convolutional-neural-networks-a9c2f2ee1524
- Dong, C.Z., Celik, O. and Catbas, F.N. (2018), "Marker-free monitoring of the grandstand structures and modal identification using computer vision methods", Struct. Health Monit., DOI: 10.1177/1475921718806895.
- Feng, M.Q., Feng, D.M, Fukuda, Y. and Mizuto M. (2015), "Nontarget vision sensor for remote measurement of bridge dynamic response", J. Bridge Eng., 20(12). DOI:10.1061/(ASCE)BE.1943-5592.0000747.
- Michael, F., Ahmed, E., He, X.F. and Conte, J.P. (2010), "Sensor network for structural health monitoring of a highway bridge", J. Comput. Civil Eng., 24(1), 11-24. DOI:10.1061/(ASCE)CP.1943-5487.0000005.
- Fukuda, Y., Feng, M.Q. and Masanobu S. (2010), "Cost-effective vision-based system for monitoring dynamic response of civil engineering structures", Struct. Control Hwalth. Monit., 17(8), 918-936. DOI: 10.1002/stc.360.
- Graybeal, B.A., Phares, B.M., Rolander, D.D., Mark, M. and Glenn, W. (2002), "Visual inspection of highway bridges", J. Nondestruct. Eval., 21(3), 67-83. DOI:10.1023/A:1022508121821.
- Hubel, D.H. and Wiesel T.N. (1962), "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex", J. Physiol., 160(1), 106-154. DOI:10.1113/jphysiol.1962.sp006837.
- Lydon,D., Lydon, M., Del Rincon, J.M., Taylor, S.E., Robinson, D., O'Brien, E. and Catbas, F.N. (2018), "Development and field testing of a time-synchronized system for multi-point displacement calculation using low-cost wireless vision-based sensors", IEEE Sens. J., 18(23), 9744-9754. DOI:10.1109/JSEN.2018.2853646.
- Marcin, M., Krzysztof, M., Jakub, P., Malgorzata, K., Pawel, S., Artur, P., Tomasz, L. and Andrzej, Z. (2016), "Non-destructive testing of industrial structures with the use of multi-camera digital image correlation method", Eng. Fail. Anal., 69(11), 122-134. DOI: 10.1016/j.engfailanal.2016.02.002.
- Krzysztof, M., Marcin, M., Tomasz, K. and Malgorzata, K. (2017), "Multi-camera digital image correlation method with distributed fields of view", Opt. Laser. Eng., 98(11), 198-204. DOI: 10.1016/J.OPTLASENG.2017.05.003.
- Li, S.H., Lin, J.Z., Li, G.Q., Bai, T., Wang, H.Q. and Pang, Y. (2018), "Vehicle type detection based on deep learning in traffic scene", Pro. C. Sci., 131(2018), 564-572. DOI:10.1016/J.PROCS.2018.04.281
- OECD (2016), "Transport infrastructure investment and maintenance spending", Paris, France. URL:https://stats.oecd.org/
- Office of National Statistics (2018), "Developing new statistics of infrastructure: August 2018", London, UK. URL:https://www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/articles/developingnewmeasuresofinfrastructureinvestment/august2018
- Ojio, T., Carey, C.H., OBrien, E.J., Doherty, C. and Taylor, S.E. (2016), "Contactless bridge weigh-in-motion", J. Bridge Eng., 21(7), 4016032. DOI: 10.1061/(ASCE)BE.1943-5592.0000776.
- Park, J.W., Lee, J.J., Jung, H.J. and Myung, H. (2010), "Visionbased displacement measurement method for high-rise building structures using partitioning approach", NDT & E Int., 43(7), 642-647. DOI: 10.1016/j.ndteint.2010.06.009.
- Piccardi, M. (2004), "Background subtraction techniques: A review", IEEE Inter. Confer. Sys., 4, 3099-3104. DOI:10.1109/ICSMC.2004.1400815.
- RAC Foundation (2019), "Bridge maintenance backlog grows", London, UK. URL: https://www.racfoundation.org/mediacentre/bridge-maintenance-backlog-grows
- Redmon, J. and Farhadi, A. (2018), "YOLOv3: An incremental improvement." arXiv:1804.02767, DOI:10.1109/CVPR.2017.690.
- Ren, S.Q., He, K.M., Girshick, R. and Sun, J. (2015), "Faster RCNN:Towards real-time object detection with region proposal networks", IEEE T. Pattern Anal., 39(6), 1137-1149. DOI:10.1109/TPAMI.2016.2577031.
- Ward, R. and Jakob D.H. (2007), "Public capital and economic growth: A critical survey", Per. Der Wirts., 8(1), 6-52. DOI:10.1111/1468-2516.00242.
- See, J.E. (2012), "Visual inspection: A review of the literature." Off. Sci. Tech. Inform., 1-77. URL:https://pdfs.semanticscholar.org/5913/d3cbf8c389a8fdfe3fd5f2e880a0da03ba5a.pdf
- Simonyan, K. and Andrew, Z. (2015), "Very deep convolutional networks for large-scale image recognition", CoRR abs/1409.1556., DOI: arXiv:1409.1556
- Stephen, G.A., Brownjohn, J.M.W. and Taylor, C.A. (1993). "Measurements of static and dynamic displacement from visual monitoring of the Humber Bridge", Eng. Struct., 15(3):197-208. DOI: 10.1016/0141-0296(93)90054-8.
- Szegedy, C., Liu, W., Jia, Y.P., Pierre, S., Scott, R., Dragomir, A., Dumitru, E., Vincent, V. and Andrew, R. (2015), "Going deeper with convolutions", IEEE CVPR., DOI:10.1109/CVPR.2015.7298594.
- World Economic Forum (2018), "The global competitiveness report 2018", Cologny, Switzerland. URL:http://reports.weforum.org/global-competitiveness-report-2018/competitiveness-rankings/#series=ROADINF
- Worth, D. (2010), "Introduction to modern information retrieval", Australian Academic and Research Libraries., 41(4), 305-306. DOI: 10.1080/00048623.2010.10721488.
- Ye, X.W., Ni, Y.Q., Wai T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: Algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3-4.363.
- Ye, X.W., Yi, T.H., Wen, C. and Su, Y.H. (2015), "Reliabilitybased assessment of steel bridge deck using a mesh-insensitive structural stress method", Smart. Struct. Syst., 16(2), 367-382. https://doi.org/10.12989/sss.2015.16.2.367.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016), "Image-based structural dynamic displacement measurement using different multiobject tracking algorithms", Smart Struct Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.
- Zaurin, R. and Catbas, F.N. (2011), "Structural health monitoring using video stream, influence lines, and statistical analysis", Struct. Health Monit., 10(3), 309-332. DOI:10.1177/1475921710373290.
- Zaurin, R., Khuc, T. and Catbas, F.N. (2015), "Hybrid sensorcamera monitoring for damage detection: Case study of a real bridge", J. Bridge Eng., 21(6), 1-27. DOI:10.1061/(ASCE)BE.1943.
- Zaurin, R. and Catbas, F.N. (2011). "Structural health monitoring using video stream, influence lines, and statistical analysis", Struct. Health Monit., 10(3), 309-332. DOI:10.1177/1475921710373290.
- Zhuo, L., Jiang, L.Y., Zhu, Z.Q., Li, J.F., Zhang, J., and Long, H.X. (2017), "Vehicle classification for large-scale traffic surveillance videos using convolutional neural networks", Mach. Vision. Appl., 28(7), 793-802. DOI: 10.1007/s00138-017-0846-2.