Acknowledgement
Supported by : Deanship of Scientific Research (DSR)
References
- Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, Int. J., 24(6), December 2019. [In press]
- Akavci, S.S. (2007), "Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26(18), 1907-1919. https://doi.org/10.1177/0731684407081766
- Akbas, Ş.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., Int. J., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259
- Akhavan, H., Hashemi, S.H., Damavanditaher, H.R., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis", Comput. Mat. Sci., 44, 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
- Arya, H., Shimpi, R.P. and Naik, N.K. (2002), "A zig-zag model for laminated composite beams", Compos. Struct., 56, 21-24. https://doi.org/10.1016/S0263-8223(01)00178-7
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Azhari, M. and Kassaei, K. (2004), "Local buckling analysis of thick anisotropic plates using complex finite strip method", Iran. J. Sci. Tech. Trans. B., 28, 21-30.
- Barton, O. (2008), "Buckling of simply supported rectangular plates under combined bending and compression using eigen sensitivity analysis", Thin-Wall. Struct., 46, 435-441. https://doi.org/10.1016/j.tws.2007.07.021
- Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5). [In press]
- Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., Int. J., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761
- Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., Int. J., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123
- Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., Int. J., 21(6),1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
- Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", App. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614
- Darvizeh, M., Darvizeh, A., Ansari, R. and Sharma, C.B. (2004), "Buckling analysis of generally laminated composite plates (generalized differential quadrature rules versus Rayleigh-Ritz method", Compos. Struct., 63, 69-74. https://doi.org/10.1016/S0263-8223(03)00133-8
-
Demasi, L. (2008), "
${\infty}3$ Hierarchy plate theories for thick and thin composite plates: The generalized unified formulation", Compos. Struct., 84, 256-270. https://doi.org/10.1016/j.compstruct.2007.08.004 -
Demasi, L. (2009a), "
${\infty}6$ mixed plate theories based on the generalized unified formulation. Part I: Governing equations", Compos. Struct., 87, 1-11. https://doi.org/10.1016/j.compstruct.2008.07.013 -
Demasi, L. (2009b), "
${\infty}6$ mixed plate theories based on the generalized unified formulation. Part II: Layerwise theories", Compos. Struct., 87, 12-22. https://doi.org/10.1016/j.compstruct.2008.07.012 -
Demasi, L. (2009c), "
${\infty}6$ mixed plate theories based on the generalized unified formulation. Part III: Advanced mixed high order shear deformation theories", Compos. Struct., 87, 183-194. https://doi.org/10.1016/j.compstruct.2008.07.011 -
Demasi, L. (2009d), "
${\infty}6$ Mixed plate theories based on the generalized unified formulation. Part IV: Zig-zag theories", Compos. Struct., 87, 195-205. https://doi.org/10.1016/j.compstruct.2008.07.010 -
Demasi, L. (2009e), "
${\infty}6$ mixed plate theories based on the generalized unified formulation. Part V: Results", Compos. Struct., 87, 1-16. https://doi.org/10.1016/j.compstruct.2008.07.009 - Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40,141. https://doi.org/10.1007/s40430-018-1065-0
- Fadoun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017), "Dynamics analysis of a transversely isotropic nonclassical thin plate", Wind Struct., Int. J., 25(1), 25-38. https://doi.org/10.12989/was.2017.25.1.025
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and nonuniform porosities", Coupl. Syst. Mech., Int. J., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247
- Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Analysis of composite plates by trigonometric shear deformation theory and multiquadrics", Comput. Struct., 83, 2225-2237. https://doi.org/10.1016/j.compstruc.2005.04.002
- Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M. and Liew, K.M. (2011), "Buckling and vibration analysis of isotropic and laminated plates by radial basis functions", Compos. Part B., 42, 592-606. https://doi.org/10.1016/j.compositesb.2010.08.001
- Fiedler, L., Lacarbonara, W. and Vestroni, F. (2010), "A generalized higher-order theory for buckling of thick multilayered composite plates with normal and transverse shear strains", Compos. Struct., 92, 3011-3019. https://doi.org/10.1016/j.compstruct.2010.05.017
- Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories for isotropic and anisotropic laminated plates", J. Reinf. Plast. Compos., 21, 775-813. https://doi.org/10.1177/073168402128988481
- Gilat, R., Williams, T.O. and Aboudi, J. (2001), "Buckling of composite plates by global-local plate theory", Compos. Part B., 32, 229-236. https://doi.org/10.1016/S1359-8368(00)00059-7
- Hadji, L. and Zouatnia, N. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., Int. J., 16(2),177-183. https://doi.org/10.12989/eas.2019.16.2.177
- Hashemia, A.S., Khorshidia, K. and Amabilib, M. (2008), "Exact solution for linear buckling of rectangular Mindlin plates", J. Sound Vib., 315, 318-342. https://doi.org/10.1016/j.jsv.2008.01.059
- Huang, Y.Q. and Li, Q.S. (2004), "Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method", Comput. Meth. App. Mech. Eng., 193, 3471-3492. https://doi.org/10.1016/j.cma.2003.12.039
- Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039
- Jafari, A.A. and Eftekhari, S.A. (2011), "An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates", App. Math. Comput., 218, 2670-2692. https://doi.org/10.1016/j.amc.2011.08.008
- Jones, R.M. (1975), Mechanics of Composite Materials, McGraw Hill Kogakusha, Ltd, Tokyo, Japan.
- Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014
- Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Thermal Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118
- Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbucklingbehaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
- Karami, B., Shahsavari, D. and Janghorban, M. (2018), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mat. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143
- Katariya, P. and Panda, S.K. (2014), "Thermo-mechanical stability analysis of composite cylindrical panels", Proceedings of ASME 2013 Gas Turbine India Conference. https://doi.org/10.1115/GTINDIA2013-3651
- Katariya, P. and Panda, S. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
- Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017a), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017b), "Nonlinear thermal bucklingbehaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., Int. J., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349
- Katariya, P.V., Das, A. and Panda, S.K. (2018), "Buckling analysis of SMA bonded sandwich structure - using FEM", IOP Conference Series: Materials Science and Engineering, 338(1), 012035. https://doi.org/10.1088/1757-899X/338/1/012035
- Kheirikhah, M.M., Khalili, S.M.R. and Fard, K.M. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Eur. J. Mech. A/Solids, 31, 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Kreja, I. (2011), "A literature review on computational models for laminated composite and sandwich panels", Cent. Eur. J. Eng., 1(1), 59-80. https://doi.org/10.2478/s13531-011-0005-x
- Kuo, S.Y. and Shiau, L.C. (2009), "Buckling and vibration of composite laminated plates with variable fiber spacing", Compos. Struct., 90, 196-200. https://doi.org/10.1016/j.compstruct.2009.02.013
- Levy, M. (1877), "Memoire sur la theorie des plaques elastique planes", J. Pure Appl. Math., 30, 219-306.
- Liew, K.M. and Chen, X.L. (2004), "Buckling of rectangular Mindlin plates subjected to partial in-plane edge loads using the radial point interpolation method", Int. J. Solids Struct., 41, 1677-1695. https://doi.org/10.1016/j.ijsolstr.2003.10.022
- Liew, K.M. and Huang, Y.Q. (2003), "Bending and buckling of thick symmetric rectangular laminates using the moving leastsquares differential quadrature method", Int. J. Mech. Sci., 45, 95-114. https://doi.org/10.1016/S0020-7403(03)00037-7
- Liew, K.M., Wang, J., Ng, T.Y. and Tan, M.J. (2004), "Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method", J. Sound Vib., 276, 997-1017. https://doi.org/10.1016/j.jsv.2003.08.026
- Liu, F.L. (2001), "Differential quadrature element method for the buckling analysis of rectangular Mindlin plates having discontinuous", Int. J. Solids Struct., 38, 2305-2321. https://doi.org/10.1016/S0020-7683(00)00120-7
- Liu, Y.G. and Pavlovic, M.N. (2008), "A generalized analytical approach to the buckling of simply-supported rectangular plates under arbitrary loads", Eng. Struct., 30, 1346-1359. https://doi.org/10.1016/j.engstruct.2007.07.025
- Liu, J., Cheng, Y.S. and Li, R.F. (2010), "A semi-analytical method for bending, buckling and free vibration analyses of sandwich panels with square-honeycomb cores", Int. J. Struct. Stab. Dyn., 10(1), 127-151. https://doi.org/10.1142/S0219455410003361
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 179-188. https://doi.org/10.12989/anr.2019.7.3.179
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
- Nali, P., Carrera, E. and Lecca, S. (2011), "Assessments of refined theories for buckling analysis of laminated plates", Compos. Struct., 93, 456-464. https://doi.org/10.1016/j.compstruct.2010.08.035
- Noor, A.K. (1975), "Stability of multilayered composite plates", Fib. Sci. Tech., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
- Noor, A.K. and Burton, W.S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42, 1-13. https://doi.org/10.1115/1.3152418
- Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Computat. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9
- Panda, S.K. and Ramachandra, L.S. (2010), "Buckling of rectangular plates with various boundary conditions loaded by non-uniform in-plane loads", Int. J. Mech. Sci., 52, 819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009
- Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004
- Panda, S.K. and Singh, B.N. (2010a), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1
- Panda, S.K. and Singh, B.N. (2010b), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809
- Panda, S.K. and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Elem. Anal. Des., 47(4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008
- Panda, S.K. and Singh, B.N. (2013a), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007
- Panda, S.K. and Singh, B.N. (2013b), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097
- Panda, S.K. and Singh, B.N. (2013c), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Based Des. Struct. Mach., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
- Panda, S.K. and Singh, B.N. (2013d), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibers", Nonlinear Dyn., 74(1-2), 395-418. https://doi.org/10.1007/s11071-013-0978-5
- Panda, S.K., Mahapatra, T.R. and Kar, V.R. (2017), "Nonlinear finite element solution of post-buckling responses of FGM panel structure under elevated thermal load and TD and TID properties", MATEC Web of Conferences, 109, 05005. http://hdl.handle.net/2080/2625
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. App. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. and Arciniega, R.A. (2004), "Shear deformation plate and shell theories: From Stavsky to present", Mech. Adv. Mater. Struct., 11(6), 535-582. https://doi.org/10.1080/15376490490452777
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
- Ruocco, E. and Fraldi, M. (2012), "An analytical model for the buckling of plates under mixed boundary conditions", Eng. Struct., 38, 78-88. https://doi.org/10.1016/j.engstruct.2011.12.049
- Ruocco, E., Minutolo, V. and Ciaramella, S. (2011), "A generalized analytical approach for the buckling analysis of thin rectangular plates with arbitrary boundary conditions", Int. J. Struct. Stab. Dyn., 11(1), 1-21. https://doi.org/10.1142/S0219455411003963
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 35(5), December10 2019. [In press]
- Sayyad, A.S. and Ghugal, Y.M. (2013), "Effect of stress concentration on laminated plates", J. Mech., 29, 241-252. https://doi.org/10.1017/jmech.2012.131
- Sayyad, A.A. and Ghugal, Y.M. (2014), "On the buckling of isotropic, transversely isotropic and laminated composite rectangular plates", Int. J. Struct. Stabil. Dyn., 14(7), 1450020. https://doi.org/10.1142/S0219455414500205
- Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445
- Shahadat, M.R.B., Alam, M.F., Mandal, M.N.A. and Ali, M.M. (2018), "Thermal transportation behaviour prediction of defective graphene sheet at various temperature: A Molecular Dynamics Study", Am. J. Nanomater., 6(1), 34-40.
- Shaikh, A.E.R. and Ganeshan, R. (2012), "Buckling analysis of tapered composite plates using Ritz method based on first-order shear deformation theory", Int. J. Struct. Stab. Dyn., 12(4), 1-21. https://doi.org/10.1142/S0219455412500307
- Shimpi, R.P. and Ghugal, Y.M. (2002), "A layerwise shear deformation theory for two layered cross-ply laminated plates", Mech. Adv. Mater. Struct., 7(4), 331-353. https://doi.org/10.1080/10759410050201690
- Shimpi, R.P., Arya, H. and Naik, N.K. (2003), "A higher order displacement model for the plate analysis", J. Reinf. Plast. Compos., 22(18), 1667-1688. https://doi.org/10.1177/073168403027618
- Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94, 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012
- Shufrin, I., Rabinovitch, O. and Eisenberger, M. (2008), "Buckling of symmetrically laminated rectangular plates with general boundary conditions-A semi analytical approach", Compos. Struct., 82, 521-531. https://doi.org/10.1016/j.compstruct.2007.02.003
- Shukla, K.K., Nath, Y., Kreuzer, E. and Kumar, K.V.S. (2005), "Buckling of laminated composite rectangular plates", ASCE J. Aero. Eng., 18(4), 215-223. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:4(215)
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94, 195-220. https://doi.org/10.1007/BF01176650
- Stein, M. and Bains, N.J.C. (1990), "Post buckling behavior of longitudinally compressed orthotropic plates with transverse shearing flexibility", AIAA J., 28, 892-895. https://doi.org/10.2514/3.25135
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Verma, V.K. and Singh, B.N. (2009), "Thermal buckling of laminated composite plates with random geometric and material properties", Int. J. Struct. Stab. Dyn., 9(2), 187-211. https://doi.org/10.1142/S0219455409002990
- Wang, C.M. and Lee, K.H. (1998), "Buckling load relationship between Reddy and Kirchhoff circular plates", J. Franklin Institute, 335B(6), 989-995. https://doi.org/10.1016/S0016-0032(97)00047-1
- Wang, C.M. and Reddy, J.N. (1997), "Buckling load relationship between Reddy and Kirchhoff plates of polygonal shape with simply supported edges", Mech. Res. Commun., 24(1), 103-108. https://doi.org/10.1016/S0093-6413(96)00084-5
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier, Oxford, UK.
- Wanji, C. and Zhen, W. (2008), "A selective review on recent development of displacement-based laminated plate theories", Rec. Pat. Mech. Eng., 1, 29-44. https://doi.org/10.2174/2212797610801010029
- Xiang, Y. and Wang, C.M. (2002), "Exact buckling and vibration solutions for stepped rectangular plates", J. Sound Vib., 250(3), 503-517. https://doi.org/10.1006/jsvi.2001.3922
- Xiang, S., Wang, K., Ai, Y., Sha, Y. and Shi, H. (2009), "Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories", Compos. Struct., 91, 31-37. https://doi.org/10.1016/j.compstruct.2009.04.029
- Zhong, H. and Gu, C. (2007), "Buckling of symmetrical cross-ply composite rectangular plates under a linearly varying in-plane load", Compos. Struct., 80, 42-48. https://doi.org/10.1016/j.compstruct.2006.02.030