참고문헌
- Aghlara, R. and Tahir, M.M. (2018), "A passive metallic damper with replaceable steel bar components for earthquake protection of structures", Eng. Struct., 159, 185-197. https://doi.org/10.1016/j.engstruct.2017.12.049
- Aguirre, M. and Sanchez, A.R. (1992), "Structural seismic damper", J. Struct. Eng., 118(5), 1158-1171. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1158)
- AISC 360-10 (2010), Specification for Structural Steel Buildings; American Institute of Steel Construction, Chicago, IL, USA.
- ASCE/SEI 7-10 (2010), Minimum Design Loads for Buildings and Other Structures; American Society of Civil Engineers, Reston, VA, USA.
- Bagheri, S., Barghian, M., Saieri, F. and Farzinfar, A. (2015), "Ushaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper", Struct., 3, 163-171. https://doi.org/10.1016/j.istruc.2015.04.003
- Black, C.J., Makris, N. and Aiken, I.D. (2004), "Component testing, seismic evaluation and characterization of bucklingrestrained braces", J. Struct. Eng., 130(6), 880-894. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(880)
- Deng, K., Pan, P. and Wang, C. (2013), "Development of crawler steel damper for bridges", J. Constr. Steel Res., 85, 140-150. https://doi.org/10.1016/j.jcsr.2013.03.009
- Dolce, M., Filardi, B., Marnetto, R. and Nigro, D. (1996), "Experimental tests and applications of a new biaxial elastoplastic device for the passive control of structures", Proceedings of the 4th World Congress on Joint Sealants and Bearing Systems for Concrete Structures, ACI SP-164, Sacramento, CA, USA.
- Fanaie, N. and Shamlou, S.O. (2015), "Response modification factor of mixed structures", Steel Compos. Struct., Int. J., 19(6), 1449-1466. https://doi.org/10.12989/scs.2015.19.6.1449
- FEMA-356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings; Federal Emergency Management Agency, Washington, DC, USA.
- FEMA-P695 (2009), Quantification of Building Seismic Performance Factors; Federal Emergency Management Agency, Washington, DC, USA.
- Gioncu, V. and Mazzolani, F.M. (2013), Seismic Design of Steel Structures, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
- Giugliano, M.T., Longo, A., Montuori, R. and Piluso, V. (2011), "Seismic reliability of traditional and innovative concentrically braced frames", Earthq. Eng. Struct. Dyn., 40(13), 1455-1474. https://doi.org/10.1002/eqe.1098
- Gray, M., Christopoulos, C., Packer, J. and Oliveira, C.D. (2012), "A new brace option for ductile braced frames", Modern Steel Constr., 52(2), 40-43.
- Kelly, J.M., Skinner, R.I. and Heine, A.J. (1972), "Mechanism of energy absorption in special devices for use in earthquake resistant structures", Bull. N.Z. Soc. Earthq. Eng., 5(3), 63-88.
- Kim, J., Park, J. and Kim, S.D. (2009), "Seismic behavior factors of buckling-restrained braced frames", Struct. Eng. Mech., Int. J., 33(3), 261-284. https://doi.org/10.12989/sem.2009.33.3.261
- Longo, A., Montuori, R. and Piluso, V. (2016), "Moment framesconcentrically braced frames dual systems: analysis of different design criteria", Struct. Infrastruct. Eng., 12(1), 122-141. https://doi.org/10.1080/15732479.2014.996164
- Louzai, A. and Abed, A. (2015), "Evaluation of the seismic behavior factor of reinforced concrete frame structures based on comparative analysis between non-linear static pushover and incremental dynamic analyses", Bull. Earthq. Eng., 13(6), 1773-1793. https://doi.org/10.1007/s10518-014-9689-7
- Mahmoudi, M. and Abdi, M.G. (2012), "Evaluating response modification factors of TADAS frames", J. Constr. Steel Res., 71, 162-170. https://doi.org/10.1016/j.jcsr.2011.10.015
- Sireteanu, T., Mitu, A.M., Giuclea, M. and Solomon, O. (2014a), "A comparative study of the dynamic behavior of Ramberg-Osgood and Bouc-Wen hysteretic models with application to seismic protection devices", Eng. Struct., 76, 255-269. https://doi.org/10.1016/j.engstruct.2014.07.002
- Sireteanu, T., Mitu, A.M., Giuclea, M., Solomon, O. and Stefanov, D. (2014b), "Analytical method for fitting the Ramberg-Osgood model to given hysteresis loops", Proceedings of the Romanian Academy-A, 15(1), 35-42.
- Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019a), "A proposal for energy dissipative braces with U-shaped steel strips", J. Constr. Steel Res., 154, 110-122. https://doi.org/10.1016/j.jcsr.2018.11.031
- Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019b), "Damagebased optimal design of friction dampers in multistory chevron braced steel frames", Soil Dyn. Earthq. Eng., 119, 11-20. https://doi.org/10.1016/j.soildyn.2019.01.004
- Takeuchi, T. and Wada, A. (2017), "Buckling-restrained braces and applications", Japan Society of Seismic Isolation, Japan.
- Uang, C.M. (1991), "Establishing R (or Rw) and Cd factors for building seismic provisions", J. Struct. Eng., 117(1), 19-28. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(19)
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141
- Wada, A., Saeki, E., Takeuchi, T. and Watanabe, A. (1998), "Development of unbounded brace", Nippon Steel Corporation: Building Construction and Urban Development Division, Japan.
- Xie, Q. (2005), "State of the art of buckling-restrained braces in Asia", J. Constr. Steel Res., 61(6), 727-748. https://doi.org/10.1016/j.jcsr.2004.11.005
- Xu, Z.D., Dai, J. and Jiang, Q.W. (2018), "Study on fatigue life and mechanical properties of BRBs with viscoelastic filler", Steel Compos. Struct., Int. J., 26(2), 139-150. https://doi.org/10.12989/scs.2018.26.2.139