DOI QR코드

DOI QR Code

Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations

  • Rajabi, Javad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2019.05.30
  • 심사 : 2019.10.14
  • 발행 : 2019.11.25

초록

In the present work, the buckling analysis of micro sandwich plate with an isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets is studied. In this research, two cases for core of micro sandwich plate is considered that involve five isotropic Devineycell materials (H30, H45, H60, H100 and H200) and an orthotropic material also two cases for facesheets of micro sandwich plate is illustrated that include piezoelectric layers reinforced by carbon and boron-nitride nanotubes and polymeric matrix reinforced by carbon nanotubes under temperature-dependent and hydro material properties on the elastic foundations. The first order shear deformation theory (FSDT) is adopted to model micro sandwich plate and to apply size dependent effects from modified strain gradient theory. The governing equations are derived using the minimum total potential energy principle and then solved by analytical method. Also, the effects of different parameters such as size dependent, side ratio, volume fraction, various material properties for cores and facesheets and temperature and humidity changes on the dimensionless critical buckling load are investigated. It is shown from the results that the dimensionless critical buckling load for boron nitride nanotube is lower than that of for carbon nanotube. It is illustrated that the dimensionless critical buckling load for Devineycell H200 is highest and lowest for H30. Also, the obtained results for micro sandwich plate with piezoelectric facesheets reinforced by carbon nanotubes (case b) is higher than other states (cases a and c).The results of this research can be used in aircraft, automotive, shipbuilding industries and biomedicine.

키워드

과제정보

연구 과제 주관 기관 : University of Kashan

참고문헌

  1. Alashti, R.A. and Khorsand, M. (2012), "Three-dimensional dynamo-thermo-elastic of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled", Int. J. Press. Vessels Pip., 96, 49-67. https://doi.org/10.1016/j.ijpvp.2012.06.006
  2. Amir, S. (2019), "Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(2), 197-208. https://doi.org/10.1177/1464420716670929
  3. Ansari, R., Torabi, J. and Hasrati, E. (2018), "Axisymmetric nonlinear vibration analysis of sandwich annular plates with FGCNTRC face sheets based on the higher-order shear deformation plate theory", Aerosp. Sci. Technol., 77, 306-319. https://doi.org/10.1016/j.ast.2018.01.010
  4. Aria, A.I. and Friswell, M.I. (2019), "Computational hygrothermal vibration and buckling analysis of functionally graded sandwich microbeams", Compos. Part B: Eng., 165, 785-797. https://doi.org/10.1016/j.compositesb.2019.02.028
  5. Arshid, E., Kiani, A. and Amir, S. (2019), "Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, p.1464420719832626. https://doi.org/10.1177/1464420719832626
  6. Bahaadini, R. and Saidi, A.R. (2019), "Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow", Aerosp. Sci. Technol., 80, 381-391. https://doi.org/10.1016/j.ast.2018.06.035
  7. Birman, V. and Kardomateas, G.A. (2018), "Review of current trends in research and applications of sandwich structures", Compos. Part B: Eng., 142, 221-240. https://doi.org/10.1016/j.compositesb.2018.01.027
  8. Emdadi, M., Mohammadimehr, M. and Rousta, Navi B. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109
  9. Ghannadpour, S.A.M., Karimi, M. and Tornabene, F. (2019), "Application of plate decomposition technique in nonlinear and post-buckling analysis of functionally graded plates containing crack", Compos. Struct., 220, 158-167. https://doi.org/10.1016/j.compstruct.2019.03.025
  10. Ghorbanpour Arani, A. and Soleymani, T. (2019), "Size-dependent vibration analysis of a rotating MR sandwich beam with varying cross section in supersonic airflow", Int. J. Mech. Sci., 151, 288-299. https://doi.org/10.1016/j.ijmecsci.2018.11.024
  11. Ghorbanpour Arani, A., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotubes under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/S0021894411050178
  12. Ghorbanpour Arani, A., Mobarakeh, M.R., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5
  13. Hajmohammad, M.H., Zarei, M.S., Sepehr, M. and Abtahi, N. (2018), "Bending and buckling analysis of functionally graded annular microplate integrated with piezoelectric layers based on layerwise theory using DQM", Aerosp. Sci. Technol., 79, 679-688. https://doi.org/10.1016/j.ast.2018.05.055
  14. Huang, Z., Huang, X., Li, W., Mei, L. and Liew J.Y.R. (2019), "Experimental behavior of VHSC encased composite stub column under compression and end moment", Steel Compos. Struct., Int. J., 31(1), 69-83. https://doi.org/10.12989/scs.2019.31.1.069
  15. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  16. Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2019), "Experimental and analytical investigations of CFFT columns with and without FRP bars under concentric compression", Steel Compos. Struct., Int. J., 30(6), 591-601. https://doi.org/10.12989/scs.2019.30.6.591
  17. Kim, J., Żur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023
  18. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006
  19. Li, Q., Wu, D., Chen, X., Liu, L. and Gao, W. (2018), "Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation", Int. J. Mech. Sci., 148, 596-610. https://doi.org/10.1016/j.ijmecsci.2018.09.020
  20. Liu, Y., Su, S., Huang, H. and Liang, Y. (2019), "Thermalmechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane", Compos. Part B: Eng., 168, 236-242. https://doi.org/10.1016/j.compositesb.2018.12.063
  21. Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., Int. J., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309
  22. Mohammadimehr, M. and Mehrabi, M. (2017), "Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow", Appl. Math. Model., 47, 685-709. https://doi.org/10.1016/j.apm.2017.03.054
  23. Mohammadimehr, M. and Mehrabi, M. (2018), "Electro-thermomechanical vibration and stability analyses of double-bonded micro composite sandwich piezoelectric tubes conveying fluid flow", Appl. Math. Model., 60, 255-272. https://doi.org/10.1016/j.apm.2018.03.008
  24. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B: Eng., 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030
  25. Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., Int. J., 21(1), 1-36. https://doi.org/10.12989/scs.2016.21.1.001
  26. Mohammadimehr, M. and Shahedi, S. (2017), "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. Part B: Eng., 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040
  27. Mohammadimehr M., Rousta Navi B., and Ghorbanpour Arani A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
  28. Mohammadimehr, M., Mohandes, M. and Moradi, M. (2016a), "Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory", J. Vib. Control, 22(7), 1790-1807. https://doi.org/10.1177/1077546314544513
  29. Mohammadimehr, M., Farahi, M.J. and Alimirzaei, S. (2016b), "Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory", Appl. Math. Mech., 37(10), 1375-1392. https://doi.org/10.1007/s10483-016-2138-9
  30. Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016c), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic microplate based on surface stress and modified couple stress theories using differential quadrature method (DQM)", Appl. Math. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9
  31. Mohammadimehr, M., Navi, B.R. and Arani, A.G. (2016d), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FGSWNT", Compos. Part. B: Eng., 87, 132-148. https://doi.org/10.1016/j.compositesb.2015.10.007
  32. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016e), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., Int. J., 20(3), 513-544. https://doi.org/10.12989/scs.2016.20.3.513
  33. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018a), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405
  34. Mohammadimehr, M., Mehrabi, M., Hadizadeh, H. and Hadizadeh, H. (2018b), "Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory", Steel Compos. Struct., Int. J., 26(4), 513-531. https://doi.org/10.12989/scs.2018.26.4.513
  35. Mohammadimehr, M., Shabani Nejad, E. and Mehrabi, M. (2018c), "Buckling and vibration analyses of MGSGT doublebonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores", Struct. Eng. Mech., Int. J., 65(4), 491-504. https://doi.org/10.12989/sem.2018.65.4.491
  36. Moradi-Dastjerdi, R. and Aghadavoudi, F. (2018), "Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT", Compos. Struct., 200, 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122
  37. Nasihatgozar, M., Daghigh, V., Eskandari, M., Nikbin, K. and Simoneau, A. (2016), "Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes", Int. J. Mech. Sci., 107, 69-79. https://doi.org/10.1016/j.ijmecsci.2016.01.010
  38. Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B: Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074
  39. Sharif Zarei, M., Hajmohammad, M.H., Mostafavifar, M. and Mohammadimehr, M. (2018), "Influence of temperature change and humidity condition on free vibration analysis of a nano composite sandwich plate resting on orthotropic Pasternak foundation by considering agglomeration effect", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217735118
  40. Sobhy, M. and Zenkour, A.M. (2018), "Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate", Compos. Part B: Eng., 154, 492-506. https://doi.org/10.1016/j.compositesb.2018.09.011
  41. Sofiyev, A.H. (2014), "The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure", Compos. Struct., 117, 124-134. https://doi.org/10.1016/j.compstruct.2014.06.025
  42. Sofiyev, A.H. (2018), "Application of the FOSDT to the solution of buckling problem of FGM sandwich conical shells under hydrostatic pressure", Compos. Part B: Eng., 144, 88-98. https://doi.org/10.1016/j.compositesb.2018.01.025
  43. Sofiyev, A.H. (2019), "Review of research on the vibration and buckling of the FGM conical shells", Compos. Struct., 211, 301-317. https://doi.org/10.1016/j.compstruct.2018.12.047
  44. Sofiyev, A.H., Hui, D., Valiyev, A.A., Kadioglu, F., Turkaslan, S., Yuan, G.Q., Kalpakci, V. and Ö zdemir, A. (2016), "Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium", Mech. Based Des. Struct. Mach., Int. J., 44(4), 384-404. https://doi.org/10.1080/15397734.2015.1083870
  45. Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., Int. J., 25(5), 581-591. https://doi.org/10.12989/scs.2017.25.5.581
  46. Timoshenko, S. and Gere, J. (1961), Theory of elastic stability, (2nd Edition), Mc Graw Hill, New York, NY, USA.
  47. Ventsel, E. and Krauthammer, T. (2001), Thin plates and shells: theory: analysis, and applications, The Pennsylvania State University; University Park, PA, USA, 0-8247-0575-0.
  48. Vinson, J.R. (2005), Sandwich Structures: Past, Present, and Future. Sandwich Structures. 7: Advancingwith Sandwich Structures and Materials, Berlin/Heidelberg: Springer-Verlag, 3-12.
  49. Xie, Q., Sinaei, H., Shariati, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., Int. J., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433
  50. Yang, Z. and He, D. (2017), "Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a remodified couple stress theory", Results in Phys., 7, 3778-3787. https://doi.org/10.1016/j.rinp.2017.09.026
  51. Zhang, L.W., Song, G. and Liew, K.M. (2015), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLSRitz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011
  52. Zhang, Z.J., Zhang, Q.C., Li, F.C., Yang, J.W., Liu, J.W., Liu, Z.Y. and Jin, F. (2019), "Modal characteristics of micro-perforated sandwich beams with square honeycomb-corrugation hybrid cores: A mixed experimental-numerical study", Thin-Wall. Struct., 137, 185-196. https://doi.org/10.1016/j.tws.2019.01.004

피인용 문헌

  1. Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers vol.37, pp.6, 2019, https://doi.org/10.12989/scs.2020.37.6.711
  2. Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC vol.10, pp.2, 2019, https://doi.org/10.12989/anr.2021.10.2.115