참고문헌
- ANSYS (2014), Mechanical APDL Release 16.0.
- Chakraborty, A., Roy Mahapatra, D. and Gopalakrishnan, S. (2002), "Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities", Compos. Struct., 55, 23-36. https://doi.org/10.1016/S0263-8223(01)00130-1
- Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "Vibration of laminated sandwich beams having soft core", J. Vib. Control., 18, 1422-1435. https://doi.org/10.1177/1077546311421947
- Chandrashekhara, K. and Bangera, K.M. (1992), "Free vibration of composite beams using a refined shear flexible beam element", Comput. Struct., 43, 719-727. https://doi.org/10.1177/1077546311421947
- Chen, W.Q., Lv, C.F. and Bian, Z.G. (2004), "Free vibration analysis of generally laminated beams via state-space-based differential quadrature", Compos. Struct., 63, 417-425. https://doi.org/10.1016/S0263-8223(03)00190-9
- Filippi, M. and Carrera, E. (2016), "Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory", Compos. Part B Eng., 98, 269-280. https://doi.org/10.1016/j.compositesb.2016.04.050
- Goyal, V.K. and Kapania, R.K. (2007), "A shear-deformable beam element for the analysis of laminated composites", Finite Elem. Anal. Des., 43, 463-477. https://doi.org/10.1016/j.finel.2006.11.011
- Jafari-Talookolaei, R.A., Abedi, M., Kargarnovin, M.H. and Ahmadian, M.T. (2012), "An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia", Int. J. Mech. Sci., 65, 97-104. https://doi.org/10.1016/j.ijmecsci.2012.09.007
- Jafari-Talookolaei, R.A., Abedi, M. and Attar, M. (2017), "Inplane and out-of-plane vibration modes of laminated composite beams with arbitrary lay-ups", Aerosp. Sci. Technol., 66, 366-379. https://doi.org/10.1016/j.ast.2017.02.027
- Jun, L., Hongxing, H. and Rongying, S. (2008), "Dynamic finite element method for generally laminated composite beams", Int. J. Mech. Sci., 50, 466-480. https://doi.org/10.1016/j.ijmecsci.2007.09.014
- Kadivar, M.H. and Mohebpour, S.R. (1998), "Finite element dynamic analysis of unsymmetric composite laminated beams with shear effect and rotary inertia under the action of moving loads", Finite Elem. Anal. Des. 29, 259-273. https://doi.org/10.1016/S0168-874X(98)00024-9
- Kahya, V. (2012), "Dynamic analysis of laminated composite beams under moving loads using finite element method", Nucl. Eng. Des., 243, 41-48. https://doi.org/10.1016/j.nucengdes.2011.12.015
- Kahya, V. and Turan, V. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Compos. Struct., Int. J., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415
- Lezgy-Nazargah, M., Shariyat, M. and Beheshti-Aval, S.B. (2011), "A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams", Acta Mech., 217, 219-242. https://doi.org/10.1007/s00707-010-0391-9
- Mohebpour, S.R., Fiouz, A.R. and Ahmadzadeh, A.A. (2011), "Dynamic investigation of laminated composite beams with shear and rotary inertia effect subjected to the moving oscillators using FEM", Compos. Struct., 93, 1118-1126. https://doi.org/10.1016/j.compstruct.2010.09.011
- OMA (2006), Operational Modal Analysis Software.
- PULSE (2006), Analysers and Solutions.
- Ramtekkar, G.S., Desai, Y.M. and Shah, A.H. (2002), "Natural vibrations of laminated composite beams by using mixed finite element modelling", J. Sound Vib., 257, 635-651. https://doi.org/10.1006/jsvi.2002.5072
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053
- Shao, D., Hu, S., Wang, Q. and Pang, F. (2017), "Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions", Compos. Part B Eng., 108, 75-90. https://doi.org/10.1016/j.compositesb.2016.09.093
- Shi, G. and Lam, K.Y. (1999), "Finite element vibration analysis of composite beams based on higher-order beam theory", J. Sound Vib., 219, 707-721. https://doi.org/10.1006/jsvi.1998.1903
- Subramanian, P. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73, 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002
- Vidal, P. and Polit, O. (2010), "Vibration of multilayered beams using sinus finite elements with transverse normal stress", Compos. Struct., 92, 1524-1534. https://doi.org/10.1016/j.compstruct.2009.10.009
- Vo, T.P. and Thai, H.T. (2012a), "Free vibration of axially loaded rectangular composite beams using refined shear deformation theory", Compos. Struct., 94, 3379-3387. https://doi.org/10.1016/j.compstruct.2012.05.012
- Vo, T.P. and Thai, H.T. (2012b), "Vibration and buckling of composite beams using refined shear deformation theory", Int. J. Mech. Sci., 62, 67-76. https://doi.org/10.1016/j.ijmecsci.2012.06.001
- Vo, T.P., Thai, H.T. and Inam, F. (2013), "Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory", Arch. Appl. Mech., 83, 605-622. https://doi.org/10.1007/s00419-012-0707-4
- Vo, T.P., Thai, H.T. and Aydogdu, M. (2017), "Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory", Compos. Struct., 178, 406-414. https://doi.org/10.1016/j.compstruct.2017.07.022
- Wang, X., Zhu, X. and Hu, P. (2015), "Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions", Int. J. Mech. Sci., 104, 190-199. https://doi.org/10.1016/j.ijmecsci.2015.10.008
- Wimmer, H. and Gherlone, M. (2017), "Explicit matrices for a composite beam-column with refined zigzag kinematics", Acta Mech., 228, 2107-2117. https://doi.org/10.1007/s00707-017-1816-5