DOI QR코드

DOI QR Code

Shear-deformable finite element for free vibrations of laminated composite beams with arbitrary lay-up

  • Kahya, Volkan (Karadeniz Technical University, Faculty of Engineering, Department of Civil Engineering) ;
  • Karaca, Sebahat (Karadeniz Technical University, Faculty of Engineering, Department of Civil Engineering) ;
  • Vo, Thuc P. (School of Engineering and Mathematical Sciences, La Trobe University)
  • 투고 : 2019.04.07
  • 심사 : 2019.10.30
  • 발행 : 2019.11.25

초록

A shear-deformable finite element model (FEM) with five nodes and thirteen degrees of freedom (DOFs) for free vibrations of laminated composite beams with arbitrary lay-up is presented. This model can be capable of considering the elastic couplings among the extensional, bending and torsional deformations, and the Poisson's effect. Lagrange's principle is employed in derivation of the equations of motion, and thus the element matrices are obtained. Comparisons of the present element's results with those in experiment, available literature and the 3D finite element analysis software (ANSYS(R)) are made to show its accuracy. Some further results are given as referencing for the future studies in vibrations of laminated composite beamst.

키워드

참고문헌

  1. ANSYS (2014), Mechanical APDL Release 16.0.
  2. Chakraborty, A., Roy Mahapatra, D. and Gopalakrishnan, S. (2002), "Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities", Compos. Struct., 55, 23-36. https://doi.org/10.1016/S0263-8223(01)00130-1
  3. Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "Vibration of laminated sandwich beams having soft core", J. Vib. Control., 18, 1422-1435. https://doi.org/10.1177/1077546311421947
  4. Chandrashekhara, K. and Bangera, K.M. (1992), "Free vibration of composite beams using a refined shear flexible beam element", Comput. Struct., 43, 719-727. https://doi.org/10.1177/1077546311421947
  5. Chen, W.Q., Lv, C.F. and Bian, Z.G. (2004), "Free vibration analysis of generally laminated beams via state-space-based differential quadrature", Compos. Struct., 63, 417-425. https://doi.org/10.1016/S0263-8223(03)00190-9
  6. Filippi, M. and Carrera, E. (2016), "Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory", Compos. Part B Eng., 98, 269-280. https://doi.org/10.1016/j.compositesb.2016.04.050
  7. Goyal, V.K. and Kapania, R.K. (2007), "A shear-deformable beam element for the analysis of laminated composites", Finite Elem. Anal. Des., 43, 463-477. https://doi.org/10.1016/j.finel.2006.11.011
  8. Jafari-Talookolaei, R.A., Abedi, M., Kargarnovin, M.H. and Ahmadian, M.T. (2012), "An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia", Int. J. Mech. Sci., 65, 97-104. https://doi.org/10.1016/j.ijmecsci.2012.09.007
  9. Jafari-Talookolaei, R.A., Abedi, M. and Attar, M. (2017), "Inplane and out-of-plane vibration modes of laminated composite beams with arbitrary lay-ups", Aerosp. Sci. Technol., 66, 366-379. https://doi.org/10.1016/j.ast.2017.02.027
  10. Jun, L., Hongxing, H. and Rongying, S. (2008), "Dynamic finite element method for generally laminated composite beams", Int. J. Mech. Sci., 50, 466-480. https://doi.org/10.1016/j.ijmecsci.2007.09.014
  11. Kadivar, M.H. and Mohebpour, S.R. (1998), "Finite element dynamic analysis of unsymmetric composite laminated beams with shear effect and rotary inertia under the action of moving loads", Finite Elem. Anal. Des. 29, 259-273. https://doi.org/10.1016/S0168-874X(98)00024-9
  12. Kahya, V. (2012), "Dynamic analysis of laminated composite beams under moving loads using finite element method", Nucl. Eng. Des., 243, 41-48. https://doi.org/10.1016/j.nucengdes.2011.12.015
  13. Kahya, V. and Turan, V. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Compos. Struct., Int. J., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415
  14. Lezgy-Nazargah, M., Shariyat, M. and Beheshti-Aval, S.B. (2011), "A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams", Acta Mech., 217, 219-242. https://doi.org/10.1007/s00707-010-0391-9
  15. Mohebpour, S.R., Fiouz, A.R. and Ahmadzadeh, A.A. (2011), "Dynamic investigation of laminated composite beams with shear and rotary inertia effect subjected to the moving oscillators using FEM", Compos. Struct., 93, 1118-1126. https://doi.org/10.1016/j.compstruct.2010.09.011
  16. OMA (2006), Operational Modal Analysis Software.
  17. PULSE (2006), Analysers and Solutions.
  18. Ramtekkar, G.S., Desai, Y.M. and Shah, A.H. (2002), "Natural vibrations of laminated composite beams by using mixed finite element modelling", J. Sound Vib., 257, 635-651. https://doi.org/10.1006/jsvi.2002.5072
  19. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
  20. Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053
  21. Shao, D., Hu, S., Wang, Q. and Pang, F. (2017), "Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions", Compos. Part B Eng., 108, 75-90. https://doi.org/10.1016/j.compositesb.2016.09.093
  22. Shi, G. and Lam, K.Y. (1999), "Finite element vibration analysis of composite beams based on higher-order beam theory", J. Sound Vib., 219, 707-721. https://doi.org/10.1006/jsvi.1998.1903
  23. Subramanian, P. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73, 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002
  24. Vidal, P. and Polit, O. (2010), "Vibration of multilayered beams using sinus finite elements with transverse normal stress", Compos. Struct., 92, 1524-1534. https://doi.org/10.1016/j.compstruct.2009.10.009
  25. Vo, T.P. and Thai, H.T. (2012a), "Free vibration of axially loaded rectangular composite beams using refined shear deformation theory", Compos. Struct., 94, 3379-3387. https://doi.org/10.1016/j.compstruct.2012.05.012
  26. Vo, T.P. and Thai, H.T. (2012b), "Vibration and buckling of composite beams using refined shear deformation theory", Int. J. Mech. Sci., 62, 67-76. https://doi.org/10.1016/j.ijmecsci.2012.06.001
  27. Vo, T.P., Thai, H.T. and Inam, F. (2013), "Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory", Arch. Appl. Mech., 83, 605-622. https://doi.org/10.1007/s00419-012-0707-4
  28. Vo, T.P., Thai, H.T. and Aydogdu, M. (2017), "Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory", Compos. Struct., 178, 406-414. https://doi.org/10.1016/j.compstruct.2017.07.022
  29. Wang, X., Zhu, X. and Hu, P. (2015), "Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions", Int. J. Mech. Sci., 104, 190-199. https://doi.org/10.1016/j.ijmecsci.2015.10.008
  30. Wimmer, H. and Gherlone, M. (2017), "Explicit matrices for a composite beam-column with refined zigzag kinematics", Acta Mech., 228, 2107-2117. https://doi.org/10.1007/s00707-017-1816-5