DOI QR코드

DOI QR Code

Bio-inspired Structural Colors of Transparent Substrate based on Light Diffraction and Interference on Microscale and Nanoscale Structures

자연모사기반 나노-마이크로패턴의 광 회절 및 간섭에 의한 투명기판의 구조색 구현

  • Park, Yong Min (Dep. of Tech Information, Korea Credit Information Services) ;
  • Kim, Byeong Hee (Dep. of Mechatronics Engineering, Kangwon National University) ;
  • Seo, Young Ho (Dep. of Mechatronics Engineering, Kangwon National University)
  • Received : 2019.09.20
  • Accepted : 2019.10.21
  • Published : 2019.10.31

Abstract

This paper addresses effects of nanoscale structures on structural colors of micropatterned transparent substrate by light diffraction. Structural colors is widely investigated because they present colors without any chemical pigments. Typically structural colors is presented by diffraction of light on a micropatterned surface or by multiple interference of light on a surface containing a periodic or quasi-periodic nano-structures. In this paper, each structural colors induced by quasi-periodic nano-structures, periodic micro-structures, and nano/micro dual structures is measured in order to investigate effects of nanoscale and microscale structures on structural colors in the transparent substrate. Using pre-fabricated pattern mold and hot-embossing process, nanoscale and microscale structures are replicated on the transparent PMMA(Poly methyl methacrylate) substrate. Nanoscale and microscale pattern molds are prepared by anodic oxidation process of aluminum sheet and by reactive ion etching process of silicon wafer, respectively. Structural colors are captured by digital camera, and their optical transmittance spectrum are measured by UV/visible spectrometer. From experimental results, we found that nano-structures provide monotonic colors by multiple interference, and micro-structures induce iridescent colors by diffraction of light. Structural colors is permanent and unchangeable, thus it can be used in various application field such as security, color filter and so on.

Keywords

References

  1. Kinoshita, S., Yoshioka, S., 2013, Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure, Chemphyschem 6:8 1442-1459. https://doi.org/10.1002/cphc.200500007
  2. Diao, Y.Y., Liu, X.Y., Toh, G.W., Shi, L., Zi, J., 2013, Multiple Structural Coloring of Silk-Fibrion Photonic Crystals and Humidity-Responsive Color Sensing, Advanced Functional Materials 23:43 5373-5380. https://doi.org/10.1002/adfm.201203672
  3. Teyssier, J., Saenko, S.V., Van Der Marel, D., Milinkovitch, M.C., 2015, Photonic Crystals Cause Active Colour Change in Chameleons, Nature communications 6 6368. https://doi.org/10.1038/ncomms7368
  4. Vignolini, S., Rudall, P.J., Rowland, A.V., Reed, A., Moyroud, E., Faden, R.B., Baumberg, J.J., Glover, B.J., Steiner, U., 2012, Pointillist Structural Color in Pollia Fruit, Proceedings of the National Academy of Sciences 109:39 15712-15715. https://doi.org/10.1073/pnas.1210105109
  5. Zhao, Y., Xie, Z., Gu, H., Zhu, C., Gu, Z., 212, Bio-Inspired Variable Structural Color Materials, Chemical Society Reviews 41:8 3297-3317. https://doi.org/10.1039/c2cs15267c
  6. Lee, T., Jang, J., Jeong, H., Rho, J.J.N.C., 2018, Plasmonic- and Dielectric-Based Structural Coloring: From Fundamentals to Practical Applications, Nano Convergence 5:1 1-21. https://doi.org/10.1186/s40580-017-0133-y
  7. Ball, P., 2012, Nature's Color Tricks, Scientific American 306:5 74-79. https://doi.org/10.1038/scientificamerican0512-74
  8. Young, T., 1804, Experimental Demonstration of the General Law of the Interference of Light, Philosophical transactions of the Royal Society of London 94 1.
  9. Ghiradella, H., Aneshansley, D., Eisner, T., Silberglied, R.E., Hinton, H.E., 1972, Ultraviolet Reflection of a Male Butterfly: Interference Color Caused by Thin-Layer Elaboration of Wing Scales, Science 178:4066 1214-1217. https://doi.org/10.1126/science.178.4066.1214
  10. Kinoshita, S., Yoshioka, S., Kawagoe, K., 2002, Mechanisms of Structural Colour in the Morpho Butterfly: Cooperation of Regularity and Irregularity in an Iridescent Scale, Proceedings of the Royal Society of London B: Biological Sciences 269:1499 1417-1421. https://doi.org/10.1098/rspb.2002.2019
  11. Vukusic, P., Sambles, J.R., 2003, Photonic Structures in Biology, Nature 424:6950 852-855. https://doi.org/10.1038/nature01941
  12. Welch, V., Vigneron, J.-P., 2007, Beyond Butterflies-the Diversity of Biological Photonic Crystals, Optical and Quantum Electronics 39:4-6 295-303. https://doi.org/10.1007/s11082-007-9094-4
  13. Yablonovitch, E., 2001, Photonic Crystals: Semiconductors of Light, Scientific American, 285, (6), pp. 46-55. https://doi.org/10.1038/scientificamerican1201-46
  14. Dufresne, E.R., Noh, H., Saranathan, V., Mochrie, S.G., Cao, H., Prum, R.O., 2009, Self-Assembly of Amorphous Biophotonic Nanostructures by Phase Separation, Soft Matter 5:9 1792-1795. https://doi.org/10.1039/b902775k
  15. McPhedran, R.C., Parker, A.R., 2015, Biomimetics: Lessons on Optics from Nature's School, Physics today 68:6 32. https://doi.org/10.1063/PT.3.2816
  16. Kim, J.H., Moon, J.H., Lee, S.-Y., Park, J., 2010, Biologically Inspired Humidity Sensor Based on Three-Dimensional Photonic Crystals, Applied Physics Letters 97:10 103701. https://doi.org/10.1063/1.3486115
  17. Hawkeye, M.M., Brett, M.J., 2011, Optimized Colorimetric Photonic-Crystal Humidity Sensor Fabricated Using Glancing Angle Deposition, Advanced Functional Materials 21:19 3652-3658. https://doi.org/10.1002/adfm.201100893
  18. Liu, Y., Chang, Y., Ling, Z., Hu, X., Li, Y., 2011, Structural Coloring of Aluminum, Electrochemistry Communications 13:12 1336-1339. https://doi.org/10.1016/j.elecom.2011.08.008
  19. Zeng, B., Gao, Y., Bartoli, F.J., 2013, Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters, Scientific Reports 3 2840. https://doi.org/10.1038/srep02840
  20. Xu, T., Wu, Y.-K., Luo, X., Guo, L.J., 2010, Plasmonic Nanoresonators for High-Resolution Colour Filtering and Spectral Imaging, Nature communications 1 59. https://doi.org/10.1038/ncomms1058
  21. Barnes, W.L., Dereux, A., Ebbesen, T.W., 2003, Surface Plasmon Subwavelength Optics, Nature 424:6950 824-830. https://doi.org/10.1038/nature01937
  22. Chen, Q., Cumming, D.R., 2010, High Transmission and Low Color Cross-Talk Plasmonic Color Filters Using Triangular-Lattice Hole Arrays in Aluminum Films, Optics Express 18:13 14056-14062. https://doi.org/10.1364/OE.18.014056
  23. Do, Y.S., Park, J.H., Hwang, B.Y., Lee, S.M., Ju, B.K., Choi, K.C., 2013, Plasmonic Color Filter and Its Fabrication for Large-Area Applications, Advanced Optical Materials 1:2 133-138. https://doi.org/10.1002/adom.201200021
  24. Yokogawa, S., Burgos, S.P., Atwater, H.A., 2012, Plasmonic Color Filters for Cmos Image Sensor Applications, Nano Letters 12:8 4349-4354. https://doi.org/10.1021/nl302110z
  25. Pashchanka, M., Yadav, S., Cottre, T., Schneider, J.J., 2014, Porous Alumina-Metallic Pt/Pd, Cr or Al Layered Nanocoatings with Fully Controlled Variable Interference Colors, Nanoscale 6:21 12877-12883. https://doi.org/10.1039/C4NR03167A
  26. Roberts, A.S., Pors, A., Albrektsen, O., Bozhevolnyi, S.I., 2014, Subwavelength Plasmonic Color Printing Protected for Ambient Use, Nano Letters 14:2 783-787. https://doi.org/10.1021/nl404129n
  27. Shimamoto, N., Tanaka, Y., Mitomo, H., Kawamura, R., Ijiro, K., Sasaki, K., Osada, Y., 2012, Nanopattern Fabrication of Gold on Hydrogels and Application to Tunable Photonic Crystal, Advanced Materials 24:38 5243-5248. https://doi.org/10.1002/adma.201201522
  28. Kumar, K., Duan, H., Hegde, R.S., Koh, S.C., Wei, J.N., Yang, J.K., 2012, Printing Colour at the Optical Diffraction Limit, Nature Nanotechnology 7 557-561. https://doi.org/10.1038/nnano.2012.128
  29. Tan, S.J., Zhang, L., Zhu, D., Goh, X.M., Wang, Y.M., Kumar, K., Qiu, C.-W., Yang, J.K., 2014, Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures, Nano Letters 14:7 4023-4029. https://doi.org/10.1021/nl501460x