DOI QR코드

DOI QR Code

Analysis of Chemical Accident-Causing Substances Using a Proton Transfer Reaction-Time of Flight Mass Spectrometer

양자전이 비행시간 질량분석기를 이용한 화학사고 원인물질 분석

  • Kim, So-Young (Ministry of Environment Han River Basin Environment Office, Siheung Joint Inter-agency Chemical Emergency Preparedness Center)
  • 김소영 (한강유역환경청 시흥화학재난합동방재센터)
  • Received : 2019.09.17
  • Accepted : 2019.11.08
  • Published : 2019.12.31

Abstract

In Korea, a total of 556 chemical accidents occurred from 2012 to 2018 caused by adverse reactions of two or more chemicals, which required significant amounts of time to identify the causative chemicals. Rapid analysis is required for effective incident response and probing. In this study, a quantum transition time-of-flight mass spectrometer was used to identify the causative agents of chemical accidents caused by adverse reactions. The analyzer enabled fast real-time analysis without the need for sample collection and pretreatment. Quantitative and qualitative analysis of most volatile organic compounds with high hydrogen affinity was performed to investigate the cause of the chemical accidents. In fact, in the month of 201◯, methanol and toluene were detected as causative agents of the accident using a quantum transition time mass spectrometer, and were also the cause of the reported odor.

국내에서는 2012년부터 2018년 까지 총 556건의 화학사고가 발생하였다. 화학사고 중 두 가지 이상의 화학물질 이상반응에 의해 발생하는 사고는 그 원인물질을 파악하는데 많은 시간이 필요하여 효과적인 사고대응과 수습을 위해서 신속한 분석이 필요하다. 본 논문은 이상반응에 의해 발생한 화학사고의 원인물질 파악을 위해 양자전이 비행시간 질량분석기를 사용하였다. 이 분석기는 시료채취와 전처리 없이 빠른 응답시간을 가져 실시간 분석이 가능하며 또한 수소친화도가 높은 대부분의 휘발성유기화합물질의 정량·정성 분석이 가능하여 이상반응에 의해 발생되는 화학사고의 원인 물질을 조사하는데 적합하다. 실제로 201◯년 ◯월에 ◯◯ 지역 화학사고 발생 시 양자전이 비행시간 질량분석기를 이용하여 측정한 결과 메탄올과 톨루엔 등이 검출되는 것을 알았으며 이상반응에 의해 발생된 황 계열 화합물이 사고 주변의 강한 악취의 원인임을 알 수 있었다.

Keywords

References

  1. D. J. Lee, T. H. Lee and C. H. Shin, "Study of the Improvement of Hazardous Chemical Management for Chemical Accident Prevention", Fire Science and Engineering, Vol. 31, No. 1, pp. 74-80 (2017). https://doi.org/10.7731/KIFSE.2017.31.1.074
  2. NCIS, "Chemicals Information System (http://ncis.go.kr)" (2019).
  3. NICS, Chemical Safety Clearing-house (http://csc.go.kr/main.do) (2019).
  4. K. J. Kim, Y. S. Yoon, J. S. Lee, H. J. Park, S. J. Seo, J. H. Yoon, G. S. Seok and K. H. Choi, "Analysis of Chemical Accident Causing Substances using PTR-TOF-MS-Case Study of Chemical Accident by Reaction Process with Epoxy and Acrylic Acid-" Journal of the Korean Society for Environmental Analysis, Vol. 17, No. 1, pp. 21-28 (2014).
  5. A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, L. Mark, H. Seehauser, R. Schottkowsky and P. Sulzer et al., "A High Resolution and High Sensitivityproton-transferreaction time- of-flight Mass Spectrometer (PTR-ToF-MS)", International Journal of Mass Spectrometry, Vol. 286, 122-128 (2009). https://doi.org/10.1016/j.ijms.2009.07.005
  6. Korea Environment Corporation, "Safe Management of Hazardous Chemicals and Personal Protective Equipment Selection Guide" pp. 3-4 (2015).
  7. S. Y. Kim, D. H. Cho and J. M. Park, "Study on Air Quality in the Case of Chemical Fires Using Proton Transfer Reaction-Time of Flight Mass Spectrometer", Fire Science and Engineering, Vol. 32, No. 6, pp. 84-90 (2018). https://doi.org/10.7731/KIFSE.2018.32.6.084
  8. J. H. Kim, J. S. Park, C. H. Min, S. Y. Kim, G. H. Yoon and S. D. Kim, "A Study on the Trimethylsilanol Analysis Method of Semiconductor Processing using a Proton Transfer Reaction -Time of Flight Mass Spectrometer", Journal of the Korean Society of Urban Environment, Vol. 17, No. 1, pp. 85-95 (2017).
  9. T. Su and W. J. Chesnavich, "Parametrization of the Ionpolar Molecule Collision Rate Constant by Trajectory Calculations", Journal of Chemical Physics, Vol. 76, pp. 5183-5185 (1982). https://doi.org/10.1063/1.442828
  10. J. Zhao and R. Zhang, "Proton Transfer Reaction Rate Constants Between Hydronium Ion (H3O+) and Volatile Organic Compounds", Atmospheric Environment, Vol. 38, pp. 2177-2185 (2004). https://doi.org/10.1016/j.atmosenv.2004.01.019