DOI QR코드

DOI QR Code

Development of a Numerical Model for the Rapidly Increasing Heat Release Rate Period During Fires (Logistic function Curve, Inversed Logistic Function Curve)

화재시 열방출 급상승 구간의 수치모형 개발에 관한 연구 (로지스틱 함수 및 역함수 곡선)

  • Kim, Jong-Hee (Dept. of Disaster Science, University of Seoul) ;
  • Song, Jun-Ho (Dept. of Mathematics, University of Seoul) ;
  • Kim, Gun-Woo (Dept. of Mechanical and Information Engineering, University of Seoul) ;
  • Kweon, Oh-Sang (Korea Institute of Construction Technology) ;
  • Yoon, Myong-O (Dept. of Disaster Science, University of Seoul)
  • 김종희 (서울시립대학교 재난과학과 대학원) ;
  • 송준호 (서울시립대학교 수학과) ;
  • 김건우 (서울시립대학교 기계정보공학과 대학원) ;
  • 권오상 (한국건설기술연구원 화재안전연구소) ;
  • 윤명오 (서울시립대학교 재난과학과)
  • Received : 2019.11.20
  • Accepted : 2019.12.02
  • Published : 2019.12.31

Abstract

In this study, a new function with higher accuracy for fire heat release rate prediction was developed. The 'αt2' curve, which is the major exponential function currently used for fire engineering calculations, must be improved to minimize the prediction gap that causes fire system engineering inefficiency and lower cost-effectiveness. The newly developed prediction function was designed to cover the initial fire stage that features rapid growth based on logistic function theory, which has a more logical background and graphical similarity compared to conventional exponential function methods for 'αt2'. The new function developed in this study showed apparently higher prediction accuracy over wider range of fire growth durations. With the progress of fire growth pattern studies, the results presented herein will contribute towards more effective fire protection engineering.

본 연구는 화재 시 열출력 급상승 구간에 대한 정확한 열방출율을 예측하기 위한 새로운 함수를 개발하여 제안하는 것을 목적으로 하였다. 현재 화재공학에서 사용되고 있는 'αt2' 곡선은 화재시스템 공학 관점에서 비효율적이며 실효성 저하를 초래하므로 열방출율의 예측오차를 최소화시킬 필요가 있다. 'αt2'과 비교하여 보다 논리적인 배경과 형태적으로 유사성을 가진 로지스틱 함수 이론을 기반으로 화재 급성장 구간은 물론 화재 초기 단계까지 적용 가능한 새로운 예측 함수를 개발하였다. 개발된 함수는 더 넓은 화재성장 구간에서 정확도 높은 예측결과를 갖는 것으로 본 연구에서 증명되었다. 이 연구결과는 향후 화재성장패턴 연구의 개발과 함께 화재공학의 발전을 위해 적용될 것이다.

References

  1. J. S. Lee, D. S. Kim, J. H. Kwak and S. Y. Kim, "A Study on the Flame Propagation and Spread", Fire Insurers Laboratories of Korea (2006).
  2. Y. H. Yoo, H. Y. Kim and H. J. Shin, "A Study on the Vehicle Fire Property using the Large Scale Calorimeter", Journal of Korean Tunnel and Underground Space, Vol. 9, No. 4, pp. 343-349 (2007).
  3. O. S. Kweon, Y. H. Yoo, H. Y. Kim and J. H. Kim, "Real Scale Experiment for Assessing Fire Model of office Compartment", Journal of Kosham, Vol. 12, No. 6, pp. 61-65 (2012).
  4. H. S. Yun and C. H. Hwang, "A Correlation Study for the Prediction of the Maximum Heat Release Rate in Closed-Compartments of Various Configurations", Fire Science and Engineering, Vol. 32, No. 1, pp. 16-23 (2018). https://doi.org/10.7731/KIFSE.2018.32.1.016
  5. J. C. Viegas, "The use of Impulse Ventilation for Smoke Control in Underground Car Parks", Tunnelling and Underground Space Technology, Vol. 25, No. 1, pp. 42-53 (2010). https://doi.org/10.1016/j.tust.2009.08.003
  6. Y. Li, "Analysis of Vehicle Fire Statistics in Zealand Parking Buildings", Fire Technology, Vol. 43, No. 2, pp. 93-106 (2007). https://doi.org/10.1007/s10694-006-0004-2
  7. K. Okamoto, "Building Behavior of Sedan Passenger Car", Fire Safety Journal, Vol. 44, pp. 301-310 (2009). https://doi.org/10.1016/j.firesaf.2008.07.001
  8. P. A. Enright, "Impact of Jet Fan Ventilation System on Sprinkler activation", Case Studies in Fire Safety, Vol. 1, pp. 1-7 (2014). https://doi.org/10.1016/j.csfs.2013.11.002