DOI QR코드

DOI QR Code

Numerical Analysis of the Effects of Droplets Characteristics of Water Spray on Fire Suppression

물 분무 액적 특성이 화재진압에 미치는 영향에 대한 수치해석

  • Lee, Jaiho (Korea Hydro & Nuclear Power Co., Ltd, Central Research Institute)
  • 이재호 (한국수력원자력(주) 중앙연구원)
  • Received : 2019.10.16
  • Accepted : 2019.10.28
  • Published : 2019.12.31

Abstract

In this study, the effects of the characteristics of droplets of water spray on suppression of fire were analyzed numerically using fire dynamics simulator (FDS) 6.5.2. Additionally, the fire suppression characteristics by the water spray nozzle, including the extinguishing coefficient (EC), droplet size distribution function (SDF), median volumetric diameter (MVD), and droplets per second (DPS), were evaluated in terms of the decreasing normalized heat release rate (HRR) curve and cooling time. It was observed that with increase in the EC, the normalized HRR curve decreased rapidly, and the changing MVD affected the suppression of fire. In case of mono-disperse, the normalized HRR curve decreased slowly with the increase in DPS. On the contrary, in case of multi-disperse, the normalized HRR curve decreased rapidly even with a small increase in DPS.

본 연구에서는 물 분무 액적 특성 변화가 화재 진압에 미치는 영향을 FDS 6.5.2를 이용하여 수치적으로 분석하였다. 물 분무 노즐의 소화계수, 액적 분포함수, 중간체적 직경 및 초당 액적 수 변화에 대한 화재진압 특성은 정규 열방출률 곡선의 감소율와 냉각시간의 측면에서 평가되었다. 소화계수가 증가하면 정규열방출률 곡선이 더 급격하게 감소하고, 중간체적입경 변화가 화재진압에 영향을 미치는 것을 확인하였다. 단일 액적분포에서 초당액적수의 증가에 따라 정규 열방출률 곡선은 더 완만하게 감소하였으며, 다중분포에서는 초당액적수가 작은 조건에서만 정규 열방출률 곡선이 급격하게 감소하는 것을 확인하였다.

Keywords

References

  1. U.S. NRC, "Fire Protection for Nuclear Power Plants, Regulatory Guide 1.189", U.S. Nuclear Regulatory Commission, Washington, D.C., USA (2009).
  2. J. Liu, G. Liao, P. Li, W. Fan and Q. Lu, "Progress in Research and Application of Water Mist Fire Suppression Technology", Chinese Science Bulletin, Vol. 48, pp. 718-725 (2003).
  3. Z. Liu, A. K. Kim and J. Z. Su, "Examination of Performance of Water Mist Fire Suppression Systems under Ventilation Conditions", Journal of Fire Protection Engineering, Vol. 11, pp. 164-193 (2001). https://doi.org/10.1106/3VE8-WWT4-C3U4-FEH9
  4. H. M. I. Mahmud, K. A. M. Moinuddin and G. R. Thorpe, "Experimental and Numerical Study of High-pressure Water-mist Nozzle Sprays", Fire Safety Journal, Vol. 81, pp. 109-117 (2016). https://doi.org/10.1016/j.firesaf.2016.01.015
  5. A. Jenft, A. Collin, P. Boulet, G. Pianet, A. Breton and A. Muller, "Experimental and Numerical Study of Pool Fire Suppression using Water Mist", Fire Safety Journal, Vol. 67, pp. 1-12 (2014). https://doi.org/10.1016/j.firesaf.2014.05.003
  6. J. Lee, "Numerical Analysis on the Rapid Fire Suppression using a Water Mist Nozzle in a Fire Compartment with a Door Opening", Nuclear Engineering and Technology, Vol. 51, pp. 410-423 (2019). https://doi.org/10.1016/j.net.2018.10.026
  7. J. Lee, "Numerical Analysis of How Ventilation Conditions Impact Compartment Fire Suppression by Water Mist", Annals of Nuclear Energy, Vol. 136, p. 107021 (2020). https://doi.org/10.1016/j.anucene.2019.107021
  8. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model (Version 6.5.2)", National Institute of Standards and Technology, Gaithersburg, Maryland, USA (2016).
  9. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamics Simulator User's Guide (Version 6.5.2)", National Institute of Standards and Technology, Gaithersburg, Maryland, USA (2016).
  10. T. Beji, S. E. Zadeh, G. Maragkos and B. Merci, "Influence of the Particle Injection Rate, Droplet Size Distribution and Volume Flux Angular Distribution on the Results and Computational Time of Water Spray CFD Simulations", Fire Safety Journal, Vol. 91, pp. 586-595 (2017). https://doi.org/10.1016/j.firesaf.2017.03.040