DOI QR코드

DOI QR Code

A Novel VPS33B Variant Identified by Exome Sequencing in a Patient with Arthrogryposis-Renal Dysfunction-Cholestasis Syndrome

  • Lee, Min Ju (Department of Pediatrics, Korea University College of Medicine) ;
  • Suh, Chae Ri (Department of Pediatrics, Korea University College of Medicine) ;
  • Shin, Jeong Hee (Department of Pediatrics, Korea University College of Medicine) ;
  • Lee, Jee Hyun (Department of Pediatrics, Korea University College of Medicine) ;
  • Lee, Yoon (Department of Pediatrics, Korea University College of Medicine) ;
  • Eun, Baik-Lin (Department of Pediatrics, Korea University College of Medicine) ;
  • Yoo, Kee Hwan (Department of Pediatrics, Korea University College of Medicine) ;
  • Shim, Jung Ok (Department of Pediatrics, Korea University College of Medicine)
  • Received : 2019.06.20
  • Accepted : 2019.08.31
  • Published : 2019.11.15

Abstract

Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome is a rare autosomal recessive multisystemic disease that is associated with the liver, kidney, skin, and central nervous and musculoskeletal systems. ARC occurs as a result of mutations in the VPS33B (Vacuolar protein sorting 33 homolog B) or VIPAR (VPS33B interacting protein, apical-basolateral polarity regulator) genes. A female infant presented with neonatal cholestasis with a severe clinical outcome. She was diagnosed with ARC syndrome using targeted exome sequencing (TES). Exome sequencing revealed compound heterozygous mutations, c.707A>T and c.239+5G>A, in VPS33B, where c.707A>T was a novel variant; the resultant functional protein defects were predicted via in silico analysis. c.239+5G>A, a pathogenic mutation that affects splicing, is found in less than 0.1% of the general population. Invasive techniques, such as liver biopsies, did not contribute to a differential diagnosis of ARC syndrome; thus, early TES together with clinical presentations constituted an apparently accurate diagnostic procedure.

Keywords

References

  1. Lutz-Richner AR, Landolt RF. Familiare gallengansmissbildungen mit tubularer neireninsurfizienz. Helv Paediatr Acta 1973;28:1-12.
  2. Zhou Y, Zhang J. Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome: from molecular genetics to clinical features. Ital J Pediatr 2014;40:77. https://doi.org/10.1186/s13052-014-0077-3
  3. Gissen P, Tee L, Johnson CA, Genin E, Caliebe A, Chitayat D, et al. Clinical and molecular genetic features of ARC syndrome. Hum Genet 2006;120:396-409. https://doi.org/10.1007/s00439-006-0232-z
  4. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. BioRxiv 531210 [Preprint]. 2019 [cited 2019 Jan 28]. Available from: http://dx.doi.org/10.1101/531210.
  5. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al.; Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285-91. https://doi.org/10.1038/nature19057
  6. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO. A global reference for human genetic variation. Nature 2015;526:68-74. https://doi.org/10.1038/nature15393
  7. Saraiva JM, Lemos C, Goncalves I, Carneiro F, Mota HC. Arthrogryposis multiplex congenita with renal and hepatic abnormalities in a female infant. J Pediatr 1990;117:761-3. https://doi.org/10.1016/S0022-3476(05)83339-6
  8. Di Rocco M, Callea F, Pollice B, Faraci M, Campiani F, Borrone C. Arthrogryposis, renal dysfunction and cholestasis syndrome: report of five patients from three Italian families. Eur J Pediatr 1995;154:835-9. https://doi.org/10.1007/BF01959793
  9. Coleman RA, Van Hove JL, Morris CR, Rhoads JM, Summar ML. Cerebral defects and nephrogenic diabetes insipidus with the ARC syndrome: additional findings or a new syndrome (ARCC-NDI)? Am J Med Genet 1997;72:335-8. https://doi.org/10.1002/(SICI)1096-8628(19971031)72:3<335::AID-AJMG16>3.0.CO;2-U
  10. Nezelof C, Dupart MC, Jaubert F, Eliachar E. A lethal familial syndrome associating arthrogryposis multiplex congenita, renal dysfunction, and a cholestatic and pigmentary liver disease. J Pediatr 1979;94:258-60. https://doi.org/10.1016/S0022-3476(79)80839-2
  11. Horslen SP, Quarrell OW, Tanner MS. Liver histology in the arthrogryposis multiplex congenita, renal dysfunction, and cholestasis (ARC) syndrome: report of three new cases and review. J Med Genet 1994;31:62-4. https://doi.org/10.1136/jmg.31.1.62
  12. Mikati MA, Barakat AY, Sulh HB, Der Kaloustian VM. Renal tubular insufficiency, cholestatic jaundice, and multiple congenital anomalies--a new multisystem syndrome. Helv Paediatr Acta 1984;39:463-71.
  13. Eastham KM, McKiernan PJ, Milford DV, Ramani P, Wyllie J, Van't Hoff W, et al. ARC syndrome: an expanding range of phenotypes. Arch Dis Child 2001;85:415-20. https://doi.org/10.1136/adc.85.5.415
  14. Ilhan O, Ozer EA, Ozdemir SA, Akbay S, Memur S, Kanar B, et al. Arthrogryposis-renal tubular dysfunction-cholestasis syndrome: a cause of neonatal cholestasis. case report. Arch Argent Pediatr 2016;114:e9-12.
  15. Knisely AS. Progressive familial intrahepatic cholestasis in children. In: Dhawan A, ed. Concise pediatric and adolescent hepatology. pediatric and adolescent medicine 16. Basel: Karger, 2012:30-7.
  16. Carim L, Sumoy L, Andreu N, Estivill X, Escarceller M. Cloning, mapping and expression analysis of VPS33B, the human orthologue of rat Vps33b. Cytogenet Cell Genet 2000;89:92-5. https://doi.org/10.1159/000015571
  17. Cullinane AR, Straatman-Iwanowska A, Zaucker A, Wakabayashi Y, Bruce CK, Luo G, et al. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat Genet 2010;42:303-12. https://doi.org/10.1038/ng.538
  18. Gissen P, Johnson CA, Morgan NV, Stapelbroek JM, Forshew T, Cooper WN, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunctioncholestasis (ARC) syndrome. Nat Genet 2004;36:400-4. https://doi.org/10.1038/ng1325
  19. Matthews RP, Plumb-Rudewiez N, Lorent K, Gissen P, Johnson CA, Lemaigre F, et al. Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 2005;132:5295-306. https://doi.org/10.1242/dev.02140
  20. Smith H, Galmes R, Gogolina E, Straatman-Iwanowska A, Reay K, Banushi B, et al. Associations among genotype, clinical phenotype, and intracellular localization of trafficking proteins in ARC syndrome. Hum Mutat 2012;33:1656-64. https://doi.org/10.1002/humu.22155

Cited by

  1. A Novel Mutation of VPS 33 B Gene Associated with Incomplete Arthrogryposis-Renal Dysfunction-Cholestasis Phenotype vol.2020, 2020, https://doi.org/10.1155/2020/8872294