References
- Abdelghany, S.M., Ewis, K.M., Mahmoud, A.A. and Nassar, M.M. (2015), "Vibration of a circular beam with variable cross sections using differential transformation method", Beni-Suef Univ. J. Basic Appl. Sci., 4(3), 185-191. https://doi.org/10.1016/j.bjbas.2015.05.006
- Abrate, S. (1995), "Vibration of non-uniform rods and beams", J. Sound Vib., 185(4), 703-716. https://doi.org/10.1006/jsvi.1995.0410
- Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., Int. J., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
- Attarnejad, R., Manavi, N. and Farsad, A. (2006), "Exact solution for the free vibration of a tapered beam with elastic end rotational restraints", Comput. Methods, (G.R. Liu, V.B.C. Tan, and X. Han, Eds.), Springer Netherlands, 1993-2003. https://doi.org/10.1007/978-1-4020-3953-9_146
- Attarnejad, R., Shahba, A. and Eslaminia, M. (2011), "Dynamic basic displacement functions for free vibration analysis of tapered beams", J. Vib. Control, 17(14), 2222-2238. https://doi.org/10.1177/1077546310396430
- Auciello, N.M. (1995), A comment on "A note on vibrating tapered beams", J. Sound Vib., 187, 724-726. https://doi.org/10.1006/jsvi.1995.0557
- Auciello, N.M. (2001), "On the transverse vibrations of non-uniform beams with axial loads and elastically restrained ends", Int. J. Mech. Sci., 43(1), 193-208. https://doi.org/10.1016/S0020-7403(99)00110-1
- Auciello, N.M. and Ercolano, A. (1997), "Exact solution for the transverse vibration of a beam a part of which is a taper beam and other part is a uniform beam", Int. J. Solids Struct., 34(17), 2115-2129. https://doi.org/10.1016/S0020-7683(96)00136-9
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinf. Plast. Compos., 27(7), 683-691. https://doi.org/10.1177/0731684407081369
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Banerjee, J.R. and Ananthapuvirajah, A. (2018), "Free vibration of functionally graded beams and frameworks using the dynamic stiffness method", J. Sound Vib., 422, 34-47. https://doi.org/10.1016/j.jsv.2018.02.010
- Banerjee, J.R. and Williams, F.W. (1985), "Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams", Int. J. Numer. Methods Eng., 21(12), 2289-2302. https://doi.org/10.1002/nme.1620211212
- Boiangiu, M., Ceausu, V. and Untaroiu, C.D. (2016), "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", J. Vib. Control, 22(11), 2591-2602. https://doi.org/10.1177/1077546314550699
- Calio, I. and Elishakoff, I. (2005), "Closed-form solutions for axially graded beam-columns", J. Sound Vib., 280(3), 1083-1094. https://doi.org/10.1016/j.jsv.2004.02.018
- Cao, D., Gao, Y., Yao, M. and Zhang, W. (2018), "Free vibration of axially functionally graded beams using the asymptotic development method", Eng. Struct., 173, 442-448. https://doi.org/10.1016/j.engstruct.2018.06.111
- Conway, H.D. and Dubil, J.F. (1965), "Vibration frequencies of truncated-cone and wedge beams", J. Appl. Mech., 32(4), 932-934. https://doi.orgu/10.1115/1.3627338
- Cortinez, V.H. and Laura, P.a.A. (1994), "An extension of Timoshenko's method and its application to buckling and vibration problems", J. Sound Vib., 169(1), 141-144. https://doi.org/10.1006/jsvi.1994.1526
- De Rosa, M.A. and Auciello, N.M. (1996), "Free vibrations of tapered beams with flexible ends", Comput. Struct., 60(2), 197-202. https://doi.org/10.1016/0045-7949(95)00397-5
- Downs, B. (1977), "Transverse vibrations of cantilever beams having unequal breadth and depth tapers", J. Appl. Mech., 44(4), 737-742. https://doi.org/10.1115/1.3424165
- Downs, B. (1978), "Reference frequencies for the validation of numerical solutions of transverse vibrations of non-uniform beams", J. Sound Vib., 61(1), 71-78. https://doi.org/10.1016/0022-460X(78)90042-1
- Ebrahimi, F., and Dashti, S. (2015), "Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., Int. J., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279
- Ece, M.C., Aydogdu, M. and Taskin, V. (2007), "Vibration of a variable cross-section beam", Mech. Res. Commun., 34(1), 78-84. https://doi.org/10.1016/j.mechrescom.2006.06.005
- Elishakoff, I. (2004), Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form Solutions, CRC Press, Boca Raton, FL, USA.
- Elishakoff, I. and Guede, Z. (2004), "Analytical polynomial solutions for vibrating axially graded beams", Mech. Adv. Mater. Struct., 11(6), 517-533. https://doi.org/10.1080/15376490490452669
- Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006
- Farokhi, H. and Ghayesh, M.H. (2015a), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002
- Farokhi, H. and Ghayesh, M.H. (2015b), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
- Farokhi, H. and Ghayesh, M.H. (2018a), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017
- Farokhi, H. and Ghayesh, M.H. (2018b), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Commun. Nonlinear Sci. Numer. Simul., 59, 592-605. https://doi.org/10.1016/j.cnsns.2017.11.033
- Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013a), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001
- Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013b), "Nonlinear resonant behavior of microbeams over the buckled state", Appl. Phys. A, 113(2), 297-307. https://doi.org/10.1007/s00339-013-7894-x.
- Farokhi, H., Ghayesh, M.H. and Hussain, S. (2016), "Large-amplitude dynamical behaviour of microcantilevers", Int. J. Eng. Sci., 106, 29-41. https://doi.org/10.1016/j.ijengsci.2016.03.002
- Farokhi, H., Ghayesh, M.H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", Int. J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007
- Firouz-Abadi, R.D., Rahmanian, M. and Amabili, M. (2013), "Exact solutions for free vibrations and buckling of double tapered columns with elastic foundation and tip mass", J. Vib. Acoust., 135(5), 051017-1-10. https://doi.org/10.1115/1.4023991
- Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., Int. J., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999
- Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004
- Ghayesh, M.H. (2018b), "Mechanics of tapered AFG shear-deformable microbeams", Microsyst. Technol., 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y
- Ghayesh, M.H. (2018c), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037
- Ghayesh, M.H. (2018d), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
- Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001
- Ghayesh, M.H. and Farokhi, H. (2015a), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004
- Ghayesh, M.H. and Farokhi, H. (2015b), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B Eng., 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074
- Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003
- Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017a), "Oscillations of functionally graded microbeams", Int. J. Eng. Sci., 110, 35-53. https://doi.org/10.1016/j.ijengsci.2016.09.011
- Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017b), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", Int. J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001
- Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72. https://doi.org/10.1016/j.ijengsci.2017.03.014
- Ghazaryan, D., Burlayenko, V.N., Avetisyan, A. and Bhaskar, A. (2018), "Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method", J. Eng. Math., 110(1), 97-121. https://doi.org/10.1007/s10665-017-9937-3
- Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
- Ghorbanpour Arani, A. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., Int. J., 28(2), 149-165. https://doi.org/scs.2018.28.2.149
- Goel, R.P. (1976), "Transverse vibrations of tapered beams", J. Sound Vib., 47(1), 1-7. https://doi.org/10.1016/0022-460X(76)90403-X
- Grossi, R.O. and Albarracin, C.M. (2003), "Eigenfrequencies of generally restrained beams", J. Appl. Math., 2003(10), 503-516. https://doi.org/10.1155/S1110757X03203065
- Grossi, R.O. and Bhat, R.B. (1991), "A note on vibrating tapered beams", J. Sound Vib., 147(1), 174-178. https://doi.org/10.1016/0022-460X(91)90693-E
- Guo, S. and Yang, S. (2014), "Transverse vibrations of arbitrary non-uniform beams", Appl. Math. Mech., 35(5), 607-620. https://doi.org/10.1007/s10483-014-1816-7
- Hashemi, S.H., Khaniki, H.B. and Khaniki, H.B. (2016), "Free vibration analysis of functionally graded materials non-uniform beams", Int. J. Eng. - Trans. C Asp., 29(12), 1734-1740. https://doi.org/10.5829/idosi.ije.2016.29.12c.12
- Hein, H. and Feklistova, L. (2011), "Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets", Eng. Struct., 33(12), 3696-3701. https://doi.org/10.1016/j.engstruct.2011.08.006
- Ho, S.H. and Chen, C.K. (1998), "Analysis of general elastically end restrained non-uniform beams using differential transform", Appl. Math. Model., 22(4-5), 219-234. https://doi.org/10.1016/S0307-904X(98)10002-1
- Hsu, J.-C., Lai, H.-Y. and Chen, C.K. (2008), "Free vibration of non-uniform Euler-Bernoulli beams with general elastically end constraints using Adomian modified decomposition method", J. Sound Vib., 318(4), 965-981. https://doi.org/10.1016/j.jsv.2008.05.010
- Huang, Y. and Li, X.-F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
- Huang, Y. and Rong, H.-W. (2017), "Free vibration of axially inhomogeneous beams that are made of functionally graded materials", Int. J. Acoust. Vib., 22(1), 68-73. https://doi.org/10.20855/ijav.2017.22.1452
- Kiani, K. (2016), "Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model", Compos. Struct., 139, 151-166. https://doi.org/10.1016/j.compstruct.2015.11.059
- Kim, H.K. and Kim, M.S. (2001), "Vibration of beams with generally restrained boundary conditions using fourier series", J. Sound Vib., 245(5), 771-784. https://doi.org/10.1006/jsvi.2001.3615
- Kukla, S. and Rychlewska, J. (2016), "An approach for free vibration analysis of axially graded beams", J. Theor. Appl. Mech., 54(3), 859-870. https://doi.org/10.15632/jtam-pl.54.3.859
- Kumar, S., Mitra, A. and Roy, H. (2015), "Geometrically nonlinear free vibration analysis of axially functionally graded taper beams", Eng. Sci. Technol. Int. J., 18(4), 579-593. https://doi.org/10.1016/j.jestch.2015.04.003
- Lai, H.-Y., Chen, C.K. and Hsu, J.-C. (2008), "Free vibration of non-uniform Euler-Bernoulli beams by the Adomian modified decomposition method", CMES - Comput. Model. Eng. Sci., 34(1), 87-115. https://doi.org/10.3970/cmes.2008.034.087
- Lee, S.Y. and Kuo, Y.H. (1992), "Exact solutions for the analysis of general elastically restrained nonuniform beams", J. Appl. Mech., 59(2S), S205-S212. https://doi.org/10.1115/1.2899490
- Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. https://doi.org/10.1016/j.ijmecsci.2017.01.011
- Lee, S.Y. and Lint, S.M. (1992), "Exact vibration solutions for nonuniform Timoshenko beams with attachments", AIAA J., 30(12), 2930-2934. https://doi.org/10.2514/3.48979
- Lee, B.K., Lee, J.K., Lee, T.E. and Kim, S.G. (2002), "Free vibrations of tapered beams with general boundary condition", KSCE J. Civ. Eng., 6(3), 283-288. https://doi.org/10.1007/BF02829150
- Lee, B.-K., Kim, S.-K., Lee, T.-E. and Ahn, D.-S. (2003), "Free vibrations of tapered beams laterally restrained by elastic springs", KSCE J. Civ. Eng., 7(2), 193-199. https://doi.org/10.1007/BF02841975
- Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237(4), 709-725. https://doi.org/10.1006/jsvi.2000.3150
- Lohar, H., Mitra, A. and Sahoo, S. (2016a), "Natural frequency and mode shapes of exponential tapered AFG beams on elastic foundation", Int. Front. Sci. Lett., 9, 9-25. https://doi.org/10.18052/www.scipress.com/IFSL.9.9
- Lohar, H., Mitra, A. and Sahoo, S. (2016b), "Geometric nonlinear free vibration of axially functionally graded non-uniform beams supported on elastic foundation", Curved Layer. Struct., 3(1), 223-239. https://doi.org/10.1515/cls-2016-0018
- Mabie, H.H. and Rogers, C.B. (1968), "Transverse vbrations of tapered cantilever beams with end support", J. Acoust. Soc. Am., 44(6), 1739-1741. https://doi.org/10.1121/1.1911327
- Naguleswaran, S. (1994), "A direct solution for the transverse vibration of Euler-Bernoulli wedge and cone beams", J. Sound Vib., 172(3), 289-304. https://doi.org/10.1006/jsvi.1994.1176
- Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., Int. J., 29(3), 363-377. https://doi.org/scs.2018.29.3.363
- Nikkhah Bahrami, M., Khoshbayani Arani, M. and Rasekh Saleh, N. (2011), "Modified wave approach for calculation of natural frequencies and mode shapes in arbitrary non-uniform beams", Sci. Iran., 18(5), 1088-1094. https://doi.org/10.1016/j.scient.2011.08.004
- Palacio-Betancur, A. and Aristizabal-Ochoa, J.D. (2019), "Statics, stability and vibration of non-prismatic linear beam-columns with semirigid connections on elastic foundation", Eng. Struct., 181, 89-94. https://doi.org/10.1016/j.engstruct.2018.12.002
- Rahmani, O., Hosseini, S., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., Int. J., 26(5), 607-620. https://doi.org/10.12989/scs.2018.26.5.607
- Rajasekaran, S. (2013), "Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach", Meccanica, 48(5), 1053-1070. https://doi.org/10.1007/s11012-012-9651-1
- Rao, C.K. and Mirza, S. (1989), "A note on vibrations of generally restrained beams", J. Sound Vib., 130(3), 453-465. https://doi.org/10.1016/0022-460X(89)90069-2
- Rezaiee-Pajand, M. and Hozhabrossadati, S.M. (2016), "Analytical and numerical method for free vibration of double-axially functionally graded beams", Compos. Struct., 152, 488-498. https://doi.org/10.1016/j.compstruct.2016.05.003
- Rezaiee-Pajand, M. and Masoodi, A.R. (2018), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932
- Rossit, C.A., Bambill, D.V. and Gilardi, G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., Int. J., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685
- Salinic, S., Obradovic, A. and Tomovic, A. (2018), "Free vibration analysis of axially functionally graded tapered, stepped, and continuously segmented rods and beams", Compos. Part B Eng., 150, 135-143. https://doi.org/10.1016/j.compositesb.2018.05.060
- Sarkar, K. and Ganguli, R. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos. Part B Eng., 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077
- Sato, K. (1980), "Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force", Int. J. Mech. Sci., 22(2), 109-115. https://doi.org/10.1016/0020-7403(80)90047-8
- Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
- Shahba, A., Attarnejad, R. and Hajilar, S. (2011a), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.3233/SAV-2010-0589
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011b), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B Eng., 42(4), 801-808. https://doi.org/10.1016/j.compositesb.2011.01.017
- Shvartsman, B.S. and Majak, J. (2016), "Free vibration analysis of axially functionally graded beams using method of initial parameters in differential form", Adv. Theor. Appl. Mech., 9(1), 31-42. https://doi.org/10.12988/atam.2016.635
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Singh, K.V., Li, G. and Pang, S.-S. (2006), "Free vibration and physical parameter identification of non-uniform composite beams", Compos. Struct., Int. J., 74(1), 37-50. https://doi.org/10.1016/j.compstruct.2005.03.015
- Taha, M. and Essam, M. (2013), "Stability behavior and free vibration of tapered columns with elastic end restraints using the DQM method", Ain Shams Eng. J., 4(3), 515-521. https://doi.org/10.1016/j.asej.2012.10.005
- Tang, A.-Y., Wu, J.-X., Li, X.-F., and Lee, K.Y. (2014), "Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams", Int. J. Mech. Sci., 89, 1-11. https://doi.org/10.1016/j.ijmecsci.2014.08.017
- Wang, C.Y. and Wang, C.M. (2013a), "Exact vibration solutions for a class of nonuniform beams", J. Eng. Mech., 139(7), 928-931. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000535
- Wang, C.Y. and Wang, C.M. (2013b), Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates, CRC Press, Boca Raton, FL, USA.
- Xing, J.-Z. and Wang, Y.-G. (2013), "Free vibrations of a beam with elastic end restraints subject to a constant axial load", Arch. Appl. Mech., 83(2), 241-252. https://doi.org/10.1007/s00419-012-0649-x
- Yuan, J., Pao, Y.-H. and Chen, W. (2016), "Exact solutions for free vibrations of axially inhomogeneous Timoshenko beams with variable cross section", Acta Mech., 227(9), 2625-2643. https://doi.org/10.1007/s00707-016-1658-6
- Zeighampour, H. and Tadi Beni, Y. (2015), "Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory", Appl. Math. Model., 39(18), 5354-5369. https://doi.org/10.1016/j.apm.2015.01.015
- Zhao, Y., Huang, Y. and Guo, M. (2017), "A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory", Compos. Struct., 168, 277-284. https://doi.org/10.1016/j.compstruct.2017.02.012
Cited by
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.295
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2019, https://doi.org/10.12989/scs.2020.36.3.293