DOI QR코드

DOI QR Code

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen (Department of Civil Engineering, Faculty of Engineering, Quchan University of Technology)
  • Received : 2019.03.25
  • Accepted : 2019.10.24
  • Published : 2019.11.10

Abstract

Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

Keywords

References

  1. Abdelghany, S.M., Ewis, K.M., Mahmoud, A.A. and Nassar, M.M. (2015), "Vibration of a circular beam with variable cross sections using differential transformation method", Beni-Suef Univ. J. Basic Appl. Sci., 4(3), 185-191. https://doi.org/10.1016/j.bjbas.2015.05.006
  2. Abrate, S. (1995), "Vibration of non-uniform rods and beams", J. Sound Vib., 185(4), 703-716. https://doi.org/10.1006/jsvi.1995.0410
  3. Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
  4. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
  5. Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., Int. J., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
  6. Attarnejad, R., Manavi, N. and Farsad, A. (2006), "Exact solution for the free vibration of a tapered beam with elastic end rotational restraints", Comput. Methods, (G.R. Liu, V.B.C. Tan, and X. Han, Eds.), Springer Netherlands, 1993-2003. https://doi.org/10.1007/978-1-4020-3953-9_146
  7. Attarnejad, R., Shahba, A. and Eslaminia, M. (2011), "Dynamic basic displacement functions for free vibration analysis of tapered beams", J. Vib. Control, 17(14), 2222-2238. https://doi.org/10.1177/1077546310396430
  8. Auciello, N.M. (1995), A comment on "A note on vibrating tapered beams", J. Sound Vib., 187, 724-726. https://doi.org/10.1006/jsvi.1995.0557
  9. Auciello, N.M. (2001), "On the transverse vibrations of non-uniform beams with axial loads and elastically restrained ends", Int. J. Mech. Sci., 43(1), 193-208. https://doi.org/10.1016/S0020-7403(99)00110-1
  10. Auciello, N.M. and Ercolano, A. (1997), "Exact solution for the transverse vibration of a beam a part of which is a taper beam and other part is a uniform beam", Int. J. Solids Struct., 34(17), 2115-2129. https://doi.org/10.1016/S0020-7683(96)00136-9
  11. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  12. Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinf. Plast. Compos., 27(7), 683-691. https://doi.org/10.1177/0731684407081369
  13. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
  14. Banerjee, J.R. and Ananthapuvirajah, A. (2018), "Free vibration of functionally graded beams and frameworks using the dynamic stiffness method", J. Sound Vib., 422, 34-47. https://doi.org/10.1016/j.jsv.2018.02.010
  15. Banerjee, J.R. and Williams, F.W. (1985), "Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams", Int. J. Numer. Methods Eng., 21(12), 2289-2302. https://doi.org/10.1002/nme.1620211212
  16. Boiangiu, M., Ceausu, V. and Untaroiu, C.D. (2016), "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", J. Vib. Control, 22(11), 2591-2602. https://doi.org/10.1177/1077546314550699
  17. Calio, I. and Elishakoff, I. (2005), "Closed-form solutions for axially graded beam-columns", J. Sound Vib., 280(3), 1083-1094. https://doi.org/10.1016/j.jsv.2004.02.018
  18. Cao, D., Gao, Y., Yao, M. and Zhang, W. (2018), "Free vibration of axially functionally graded beams using the asymptotic development method", Eng. Struct., 173, 442-448. https://doi.org/10.1016/j.engstruct.2018.06.111
  19. Conway, H.D. and Dubil, J.F. (1965), "Vibration frequencies of truncated-cone and wedge beams", J. Appl. Mech., 32(4), 932-934. https://doi.orgu/10.1115/1.3627338
  20. Cortinez, V.H. and Laura, P.a.A. (1994), "An extension of Timoshenko's method and its application to buckling and vibration problems", J. Sound Vib., 169(1), 141-144. https://doi.org/10.1006/jsvi.1994.1526
  21. De Rosa, M.A. and Auciello, N.M. (1996), "Free vibrations of tapered beams with flexible ends", Comput. Struct., 60(2), 197-202. https://doi.org/10.1016/0045-7949(95)00397-5
  22. Downs, B. (1977), "Transverse vibrations of cantilever beams having unequal breadth and depth tapers", J. Appl. Mech., 44(4), 737-742. https://doi.org/10.1115/1.3424165
  23. Downs, B. (1978), "Reference frequencies for the validation of numerical solutions of transverse vibrations of non-uniform beams", J. Sound Vib., 61(1), 71-78. https://doi.org/10.1016/0022-460X(78)90042-1
  24. Ebrahimi, F., and Dashti, S. (2015), "Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., Int. J., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279
  25. Ece, M.C., Aydogdu, M. and Taskin, V. (2007), "Vibration of a variable cross-section beam", Mech. Res. Commun., 34(1), 78-84. https://doi.org/10.1016/j.mechrescom.2006.06.005
  26. Elishakoff, I. (2004), Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form Solutions, CRC Press, Boca Raton, FL, USA.
  27. Elishakoff, I. and Guede, Z. (2004), "Analytical polynomial solutions for vibrating axially graded beams", Mech. Adv. Mater. Struct., 11(6), 517-533. https://doi.org/10.1080/15376490490452669
  28. Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006
  29. Farokhi, H. and Ghayesh, M.H. (2015a), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002
  30. Farokhi, H. and Ghayesh, M.H. (2015b), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
  31. Farokhi, H. and Ghayesh, M.H. (2018a), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017
  32. Farokhi, H. and Ghayesh, M.H. (2018b), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Commun. Nonlinear Sci. Numer. Simul., 59, 592-605. https://doi.org/10.1016/j.cnsns.2017.11.033
  33. Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013a), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001
  34. Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013b), "Nonlinear resonant behavior of microbeams over the buckled state", Appl. Phys. A, 113(2), 297-307. https://doi.org/10.1007/s00339-013-7894-x.
  35. Farokhi, H., Ghayesh, M.H. and Hussain, S. (2016), "Large-amplitude dynamical behaviour of microcantilevers", Int. J. Eng. Sci., 106, 29-41. https://doi.org/10.1016/j.ijengsci.2016.03.002
  36. Farokhi, H., Ghayesh, M.H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", Int. J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007
  37. Firouz-Abadi, R.D., Rahmanian, M. and Amabili, M. (2013), "Exact solutions for free vibrations and buckling of double tapered columns with elastic foundation and tip mass", J. Vib. Acoust., 135(5), 051017-1-10. https://doi.org/10.1115/1.4023991
  38. Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., Int. J., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999
  39. Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004
  40. Ghayesh, M.H. (2018b), "Mechanics of tapered AFG shear-deformable microbeams", Microsyst. Technol., 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y
  41. Ghayesh, M.H. (2018c), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037
  42. Ghayesh, M.H. (2018d), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
  43. Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001
  44. Ghayesh, M.H. and Farokhi, H. (2015a), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004
  45. Ghayesh, M.H. and Farokhi, H. (2015b), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004
  46. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
  47. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
  48. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021
  49. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006
  50. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B Eng., 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074
  51. Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003
  52. Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017a), "Oscillations of functionally graded microbeams", Int. J. Eng. Sci., 110, 35-53. https://doi.org/10.1016/j.ijengsci.2016.09.011
  53. Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017b), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", Int. J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001
  54. Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72. https://doi.org/10.1016/j.ijengsci.2017.03.014
  55. Ghazaryan, D., Burlayenko, V.N., Avetisyan, A. and Bhaskar, A. (2018), "Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method", J. Eng. Math., 110(1), 97-121. https://doi.org/10.1007/s10665-017-9937-3
  56. Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
  57. Ghorbanpour Arani, A. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., Int. J., 28(2), 149-165. https://doi.org/scs.2018.28.2.149
  58. Goel, R.P. (1976), "Transverse vibrations of tapered beams", J. Sound Vib., 47(1), 1-7. https://doi.org/10.1016/0022-460X(76)90403-X
  59. Grossi, R.O. and Albarracin, C.M. (2003), "Eigenfrequencies of generally restrained beams", J. Appl. Math., 2003(10), 503-516. https://doi.org/10.1155/S1110757X03203065
  60. Grossi, R.O. and Bhat, R.B. (1991), "A note on vibrating tapered beams", J. Sound Vib., 147(1), 174-178. https://doi.org/10.1016/0022-460X(91)90693-E
  61. Guo, S. and Yang, S. (2014), "Transverse vibrations of arbitrary non-uniform beams", Appl. Math. Mech., 35(5), 607-620. https://doi.org/10.1007/s10483-014-1816-7
  62. Hashemi, S.H., Khaniki, H.B. and Khaniki, H.B. (2016), "Free vibration analysis of functionally graded materials non-uniform beams", Int. J. Eng. - Trans. C Asp., 29(12), 1734-1740. https://doi.org/10.5829/idosi.ije.2016.29.12c.12
  63. Hein, H. and Feklistova, L. (2011), "Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets", Eng. Struct., 33(12), 3696-3701. https://doi.org/10.1016/j.engstruct.2011.08.006
  64. Ho, S.H. and Chen, C.K. (1998), "Analysis of general elastically end restrained non-uniform beams using differential transform", Appl. Math. Model., 22(4-5), 219-234. https://doi.org/10.1016/S0307-904X(98)10002-1
  65. Hsu, J.-C., Lai, H.-Y. and Chen, C.K. (2008), "Free vibration of non-uniform Euler-Bernoulli beams with general elastically end constraints using Adomian modified decomposition method", J. Sound Vib., 318(4), 965-981. https://doi.org/10.1016/j.jsv.2008.05.010
  66. Huang, Y. and Li, X.-F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
  67. Huang, Y. and Rong, H.-W. (2017), "Free vibration of axially inhomogeneous beams that are made of functionally graded materials", Int. J. Acoust. Vib., 22(1), 68-73. https://doi.org/10.20855/ijav.2017.22.1452
  68. Kiani, K. (2016), "Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model", Compos. Struct., 139, 151-166. https://doi.org/10.1016/j.compstruct.2015.11.059
  69. Kim, H.K. and Kim, M.S. (2001), "Vibration of beams with generally restrained boundary conditions using fourier series", J. Sound Vib., 245(5), 771-784. https://doi.org/10.1006/jsvi.2001.3615
  70. Kukla, S. and Rychlewska, J. (2016), "An approach for free vibration analysis of axially graded beams", J. Theor. Appl. Mech., 54(3), 859-870. https://doi.org/10.15632/jtam-pl.54.3.859
  71. Kumar, S., Mitra, A. and Roy, H. (2015), "Geometrically nonlinear free vibration analysis of axially functionally graded taper beams", Eng. Sci. Technol. Int. J., 18(4), 579-593. https://doi.org/10.1016/j.jestch.2015.04.003
  72. Lai, H.-Y., Chen, C.K. and Hsu, J.-C. (2008), "Free vibration of non-uniform Euler-Bernoulli beams by the Adomian modified decomposition method", CMES - Comput. Model. Eng. Sci., 34(1), 87-115. https://doi.org/10.3970/cmes.2008.034.087
  73. Lee, S.Y. and Kuo, Y.H. (1992), "Exact solutions for the analysis of general elastically restrained nonuniform beams", J. Appl. Mech., 59(2S), S205-S212. https://doi.org/10.1115/1.2899490
  74. Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. https://doi.org/10.1016/j.ijmecsci.2017.01.011
  75. Lee, S.Y. and Lint, S.M. (1992), "Exact vibration solutions for nonuniform Timoshenko beams with attachments", AIAA J., 30(12), 2930-2934. https://doi.org/10.2514/3.48979
  76. Lee, B.K., Lee, J.K., Lee, T.E. and Kim, S.G. (2002), "Free vibrations of tapered beams with general boundary condition", KSCE J. Civ. Eng., 6(3), 283-288. https://doi.org/10.1007/BF02829150
  77. Lee, B.-K., Kim, S.-K., Lee, T.-E. and Ahn, D.-S. (2003), "Free vibrations of tapered beams laterally restrained by elastic springs", KSCE J. Civ. Eng., 7(2), 193-199. https://doi.org/10.1007/BF02841975
  78. Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237(4), 709-725. https://doi.org/10.1006/jsvi.2000.3150
  79. Lohar, H., Mitra, A. and Sahoo, S. (2016a), "Natural frequency and mode shapes of exponential tapered AFG beams on elastic foundation", Int. Front. Sci. Lett., 9, 9-25. https://doi.org/10.18052/www.scipress.com/IFSL.9.9
  80. Lohar, H., Mitra, A. and Sahoo, S. (2016b), "Geometric nonlinear free vibration of axially functionally graded non-uniform beams supported on elastic foundation", Curved Layer. Struct., 3(1), 223-239. https://doi.org/10.1515/cls-2016-0018
  81. Mabie, H.H. and Rogers, C.B. (1968), "Transverse vbrations of tapered cantilever beams with end support", J. Acoust. Soc. Am., 44(6), 1739-1741. https://doi.org/10.1121/1.1911327
  82. Naguleswaran, S. (1994), "A direct solution for the transverse vibration of Euler-Bernoulli wedge and cone beams", J. Sound Vib., 172(3), 289-304. https://doi.org/10.1006/jsvi.1994.1176
  83. Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., Int. J., 29(3), 363-377. https://doi.org/scs.2018.29.3.363
  84. Nikkhah Bahrami, M., Khoshbayani Arani, M. and Rasekh Saleh, N. (2011), "Modified wave approach for calculation of natural frequencies and mode shapes in arbitrary non-uniform beams", Sci. Iran., 18(5), 1088-1094. https://doi.org/10.1016/j.scient.2011.08.004
  85. Palacio-Betancur, A. and Aristizabal-Ochoa, J.D. (2019), "Statics, stability and vibration of non-prismatic linear beam-columns with semirigid connections on elastic foundation", Eng. Struct., 181, 89-94. https://doi.org/10.1016/j.engstruct.2018.12.002
  86. Rahmani, O., Hosseini, S., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., Int. J., 26(5), 607-620. https://doi.org/10.12989/scs.2018.26.5.607
  87. Rajasekaran, S. (2013), "Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach", Meccanica, 48(5), 1053-1070. https://doi.org/10.1007/s11012-012-9651-1
  88. Rao, C.K. and Mirza, S. (1989), "A note on vibrations of generally restrained beams", J. Sound Vib., 130(3), 453-465. https://doi.org/10.1016/0022-460X(89)90069-2
  89. Rezaiee-Pajand, M. and Hozhabrossadati, S.M. (2016), "Analytical and numerical method for free vibration of double-axially functionally graded beams", Compos. Struct., 152, 488-498. https://doi.org/10.1016/j.compstruct.2016.05.003
  90. Rezaiee-Pajand, M. and Masoodi, A.R. (2018), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932
  91. Rossit, C.A., Bambill, D.V. and Gilardi, G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., Int. J., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685
  92. Salinic, S., Obradovic, A. and Tomovic, A. (2018), "Free vibration analysis of axially functionally graded tapered, stepped, and continuously segmented rods and beams", Compos. Part B Eng., 150, 135-143. https://doi.org/10.1016/j.compositesb.2018.05.060
  93. Sarkar, K. and Ganguli, R. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos. Part B Eng., 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077
  94. Sato, K. (1980), "Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force", Int. J. Mech. Sci., 22(2), 109-115. https://doi.org/10.1016/0020-7403(80)90047-8
  95. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009
  96. Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
  97. Shahba, A., Attarnejad, R. and Hajilar, S. (2011a), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.3233/SAV-2010-0589
  98. Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011b), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B Eng., 42(4), 801-808. https://doi.org/10.1016/j.compositesb.2011.01.017
  99. Shvartsman, B.S. and Majak, J. (2016), "Free vibration analysis of axially functionally graded beams using method of initial parameters in differential form", Adv. Theor. Appl. Mech., 9(1), 31-42. https://doi.org/10.12988/atam.2016.635
  100. Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020
  101. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
  102. Singh, K.V., Li, G. and Pang, S.-S. (2006), "Free vibration and physical parameter identification of non-uniform composite beams", Compos. Struct., Int. J., 74(1), 37-50. https://doi.org/10.1016/j.compstruct.2005.03.015
  103. Taha, M. and Essam, M. (2013), "Stability behavior and free vibration of tapered columns with elastic end restraints using the DQM method", Ain Shams Eng. J., 4(3), 515-521. https://doi.org/10.1016/j.asej.2012.10.005
  104. Tang, A.-Y., Wu, J.-X., Li, X.-F., and Lee, K.Y. (2014), "Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams", Int. J. Mech. Sci., 89, 1-11. https://doi.org/10.1016/j.ijmecsci.2014.08.017
  105. Wang, C.Y. and Wang, C.M. (2013a), "Exact vibration solutions for a class of nonuniform beams", J. Eng. Mech., 139(7), 928-931. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000535
  106. Wang, C.Y. and Wang, C.M. (2013b), Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates, CRC Press, Boca Raton, FL, USA.
  107. Xing, J.-Z. and Wang, Y.-G. (2013), "Free vibrations of a beam with elastic end restraints subject to a constant axial load", Arch. Appl. Mech., 83(2), 241-252. https://doi.org/10.1007/s00419-012-0649-x
  108. Yuan, J., Pao, Y.-H. and Chen, W. (2016), "Exact solutions for free vibrations of axially inhomogeneous Timoshenko beams with variable cross section", Acta Mech., 227(9), 2625-2643. https://doi.org/10.1007/s00707-016-1658-6
  109. Zeighampour, H. and Tadi Beni, Y. (2015), "Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory", Appl. Math. Model., 39(18), 5354-5369. https://doi.org/10.1016/j.apm.2015.01.015
  110. Zhao, Y., Huang, Y. and Guo, M. (2017), "A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory", Compos. Struct., 168, 277-284. https://doi.org/10.1016/j.compstruct.2017.02.012

Cited by

  1. Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.295
  2. Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2019, https://doi.org/10.12989/scs.2020.36.3.293