Acknowledgement
Supported by : National Natural Science Foundation of China, Excellent Youth Science Foundation of Heilongjiang Province, Natural Science Foundation of the Heilongjiang Province
References
- Abid, M., Hou, X., Zheng, W. and Hussain, R.R. (2019), "Effect of fibers on high-temperature mechanical behavior and microstructure of reactive powder concrete", Materials, 12(2), 329. https://doi.org/10.3390/ma12020329
- Castedo, R., Segarra, P., Alanon, A., Lopez, L.M., Santos, A.P. and Sanchidrian, J.A. (2015), "Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation", Int. J. Impact Eng., 86, 145-156. https://doi.org/10.1016/j.ijimpeng.2015.08.004
- Chen, X., Chen, C., Xu, L. and Shao, Y. (2016), "Dynamic flexural strength of concrete under high strain rates", Magaz. Concrete Res., 69(3), 109-119. https://doi.org/10.1680/jmacr.15.00548
- Chen, X., Ge, L., Zhou, J. and Wu, S. (2017), "Dynamic Brazilian test of concrete using split Hopkinson pressure bar", Mater. Struct., 50(1), 1-10. https://doi.org/10.1617/s11527-016-0885-6
- Chuda-Kowalska, M. and Garstecki, A. (2016), "Experimental study of anisotropic behavior of PU foam used in sandwich panels", Steel Compos. Struct., Int. J., 20(1), 43-56. https://doi.org/10.12989/scs.2016.20.1.043
- Codina, R., Ambrosini, D. and de Borbon, F. (2017), "New sacrificial cladding system for the reduction of blast damage in reinforced concrete structures", Int. J. Protect. Struct., 8(2), 221-236. https://doi.org/10.1177/2041419617701571
- CYMAT (2008), Technical Manual for CYMAT, CYMAT Group, Canada.
- Dear, J.P., Rolfe, E., Kelly, M., Arora, H. and Hooper, P.A. (2017), "Blast performance of composite sandwich structures", Procedia Eng., 173, 471-478. https://doi.org/10.1016/j.proeng.2016.12.065
- Foglar, M., Hajek, R., Fladr, J., Pachman, J. and Stoller, J. (2017), "Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks", Constr. Build. Mater., 145, 588-601. https://doi.org/10.1016/j.conbuildmat.2017.04.054
- Guzas, E.L. and Earls, C.J. (2010), "Air blast load generation for simulating structural response", Steel Compos. Struct., Int. J., 10(5), 429-455. https://doi.org/10.12989/scs.2010.10.5.429
- Hafizi, M.N., Risby, M.S., Umar, S.T., Isa, M.F.M., Sohaimi, A.S.M. and Khalis, S. (2017), "Experimental and numerical investigation on blast wave propagation in soil structure", J. Fundam. Appl. Sci., 9(3S), 221-230. http://dx.doi.org/10.4314/jfas.v9i3s.19
- Hanssen, A.G., Enstock, L. and Langseth, M. (2002), "Close-range blast loading of aluminum foam panels", Int. J. Impact Eng., 27(6), 593-618. https://doi.org/10.1016/S0734-743X(01)00155-5
- Hao, H., Hao, Y., Li, J. and Chen, W. (2016), "Review of the current practices in blast-resistant analysis and design of concrete structures", Adv. Struct. Eng., 19(8), 1193-1223. https://doi.org/10.1177/1369433216656430
- Hou, X., Cao, S., Rong, Q. and Zheng, W. (2018a), "A P-I diagram approach for predicting failure modes of RPC one-way slabs subjected to blast loading", Int. J. Impact Eng., 120, 171-184. https://doi.org/10.1016/j.ijimpeng.2018.06.006
- Hou, X., Cao, S., Rong, Q., Zheng, W. and Li, G. (2018b), "Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete", Constr. Build. Mater., 170, 570-581. https://doi.org/10.1016/j.conbuildmat.2018.03.101
- Hou, X., Cao, S., Rong, Q., Zheng, W. and Li, G. (2018c), "Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates", Eng. Struct., 169, 119-130. https://doi.org/10.1016/j.engstruct.2018.05.036
- Hou, X., Ren, P. and Rong, Q. (2019), "Effect of fire insulation on fire resistance of hybrid-fiber reinforced reactive powder concrete beams", Compos. Struct., 209, 219-232. https://doi.org/10.1016/j.compstruct.2018.10.073
- Jayasooriya, R., Thambiratnam, P.D. and Perera, J.N. (2014), "Blast response and safety evaluation of a composite column for use as key element in structural systems", Eng. Struct., 61, 31-43. https://doi.org/10.1016/j.engstruct.2014.01.007
- Jing, L., Wang, Z. and Zhao, L. (2013), "Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading-Numerical simulations", Compos. Struct., 99(5), 213-223. https://doi.org/10.1016/j.compstruct.2012.12.013
- Kodur, V. (2014), "Properties of concrete at elevated temperatures", ISRN Civil Engineering, 2014,1-15. http://dx.doi.org/10.1155/2014/468510
- Krundaeva, A., De Bruyne, G., Gagliardi, F. and Van Paepegem, W. (2016), "Dynamic compressive strength and crushing properties of expanded polystyrene foam for different strain rates and different temperatures", Polym. Test., 55, 61-68. https://doi.org/10.1016/j.polymertesting.2016.08.005
- Langdon, G.S., Von Klemperer, C.J., Rowland, B.K. and Nurick, G.N. (2012), "The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments", Eng. Struct., 36, 104-112. https://doi.org/10.1016/j.engstruct.2011.11.023
- Li, S., Li, N. and Li, Y. (2008), "Processing and microstructure characterization of porous corundum-spinel ceramics prepared by in situ decomposition pore-forming technique", Ceram. Int., 34(5), 1241-1246. https://doi.org/10.1016/j.ceramint.2007.03.018
- Li, X., Huang, R., Li, Y. and Gao, G. (2013), "Experimental research of foamed ceramic composite under dynamic loading using SHPB", Adv. Mater. Res., 718-720, 112-116. https://doi.org/10.4028/www.scientific.net/AMR.718-720.112
- Liang, M., Lu, F., Zhang, G. and Li, X. (2017), "Design of stepwise foam claddings subjected to air-blast based on Voronoi model", Steel Compos. Struct., Int. J., 23(1), 107-114. https://doi.org/10.12989/scs.2017.23.1.107
- Luo, W. (2011), "Study on mechanical properties of ceramic foams and application in defense works", Master's Dissertation; University of Science and Technology of China, Hefei, China. [In Chinese]
- Luo, T. (2015), "Study on the Preparation Process and Antiballistic Properties of Ceramic Composite Targets Confined by Fiber", Master's Dissertation; Beijing Institute of Technology, Beijing, China, pp. 26-27. [In Chinese]
- LS-DYNA (2006), Keyword user's manual Livermore, Livermore Software Technology Corporation, CA, USA.
- Mehr, M., Davis, C., Sadman, K., Hooper, R.J., Manuel, M.V. and Nino, J.C. (2016). "Epoxy interface method enables enhanced compressive testing of highly porous and brittle materials", Ceram. Int., 42(1), 1150-1159. https://doi.org/10.1016/j.ceramint.2015.09.045
- Mondal, D.P., Jha, N., Badkul, A., Das, S. and Khedle, R. (2012), "High temperature compressive deformation behaviour of aluminum syntactic foam", Mater. Sci. Eng.: A, 534, 521-529. https://doi.org/10.1016/j.msea.2011.12.002
- Murray, Y.D., Abu-Odeh, A.Y. and Bligh, R.P. (2007), "Evaluation of LS-DYNA concrete material model 159", No. FHWA-HRT-05-063; Department of Transportation, USA.
- Nam, J.W., Kim, H.J., Kim, S.B., Yi, N.H. and Kim, J.H.J. (2010), "Numerical evaluation of the retrofit effectiveness for GFRP retrofitted concrete slab subjected to blast pressure", Compos. Struct., 92(5), 1212-1222. https://doi.org/10.1016/j.compstruct.2009.10.031
- Nie, B., He, X., Zhang, R., Chen, W. and Zhang, J. (2011), "The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation", J. Hazard. Mater., 192(2), 741-747. https://doi.org/10.1016/j.jhazmat.2011.05.083
- Ousji, H., Belkassem, B., Louar, M.A., Reymen, B., Pyl, L. and Vantomme, J. (2016), "Experimental study of the effectiveness of sacrificial cladding using polymeric foams as crushable core with a simply supported steel beam", Adv. Civil Eng., 2016, 1-13. http://dx.doi.org/10.1155/2016/8301517
- Pham, T. M., Chen, W., Kingston, J. and Hao, H. (2018), "Impact response and energy absorption of single phase syntactic foam", Compos. Part B: Eng., 150, 226-233. https://doi.org/10.1016/j.compositesb.2018.05.057
- Pinnoji, P.K., Mahajan, P. and Bourdet, N. (2010), "Impact dynamics of metal foam shells for motorcycle helmets: Experiments & numerical modeling", Int. J. Impact Eng., 37(3), 274-284. https://doi.org/10.1016/j.ijimpeng.2009.05.013
- Rashad, M. and Yang, T.Y. (2018), "Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads", Steel Compos. Struct., Int. J., 27(6), 717-725. https://doi.org/10.12989/scs.2018.27.6.717
- Shi, D. and Chen, X. (2018), "Flexural Tensile Fracture Behavior of Pervious Concrete under Static Preloading", J. Mater. Civil Eng., 30(11), 06018015-1-7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002477
- Silva, B.B.R., Santana, R.M.C and Forte, M.M.C. (2010), "A solventless castor oil-based PU adhesive for wood and foam substrates", Int. J. Adhes. Adhes., 30(7), 559-565. https://doi.org/10.1016/j.ijadhadh.2010.07.001
- Wei, C., Xu, M., Sun, J., Fan, H. and Xie, S. (2011) "Design and mechanics analysis of explosive-barrier devices in mining face based on ceramic foam", Proceedings of the 2nd International Conference on Artificial Intelligence, Management Science & Electronic Commerce, pp. 1050-1053. https://doi.org/10.1109/AIMSEC.2011.6010684
- Wu, C., Huang, L. and Oehlers, D.J. (2011), "Blast testing of aluminum foam-protected reinforced concrete slabs", J. Perform. Constr. Facil., 25(5), 464-474. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000163
- Xia, Y., Wu, C., Zhang, F., Li, Z.X. and Bennett, T. (2014), "Numerical analysis of foam-protected RC members under blast load", Int. J. Protect. Struct., 5(4), 367-390. https://doi.org/10.1260/2041-4196.5.4.367
- Xia, Y., Wu, C., Liu, Z.X. and Yuan, Y. (2016), "Protective effect of graded density aluminum foam on RC slab under blast loading-An experimental study", Constr. Build. Mater., 111, 209-222. https://doi.org/10.1016/j.conbuildmat.2016.02.092
- Xu, J. and Lu, Y. (2013), "A comparative study of modelling RC slab response to blast loading with two typical concrete material models", Int. J. Protect. Struct., 4(3), 415-432. https://doi.org/10.1260/2041-4196.4.3.415
- Ye, Z.B., Li, Y.C., Zhao, K., Huang, R.Y., Zhang, Y.L. and Sun, X.W. (2018), "New form of equivalent constitutive model for combined shell particle composites and its application in civil air defense", Int. J. Civil Eng., 17(5), 555-561. https://doi.org/10.1007/s40999-018-0324-x
- Zake-Tiluga, I., Svinka, V., Svinka, R. and Grase, L. (2015). "Thermal shock resistance of porous Al2O3-mullite ceramics", Ceram. Int., 41(9), 11504-11509. https://doi.org/10.1016/j.ceramint.2015.05.116
- Zhang, J.F., Liang, X.M., Ma, Z.Y., Yang, Y.Y., Liang, J.J., Zhu, H.Y., Wang, T.W. and Wang, S.J. (2011), "Study on chain scission of gas explosion reaction in foam ceramics", Procedia Eng., 26, 2369-2375. https://doi.org/10.1016/j.proeng.2011.11.2447
- Zhou, D., Li, R., Wang, J. and Guo, C. (2017), "Study on Impact Behavior and Impact Force of Bridge Pier Subjected to Vehicle Collision", Shock Vib., 2017, 1-12. https://doi.org/10.1155/2017/7085392
- Zhu, C., Lin, Z.T.L., Chia, Y.F. and Chong, K.P. (2009), "Protection of reinforced concrete structures against blast loading", Final Year Research Project Report; The University of Adelaide, Adelaide, Australia.