DOI QR코드

DOI QR Code

Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads

  • Hou, Xiaomeng (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology) ;
  • Liu, Kunyu (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology) ;
  • Cao, Shaojun (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology) ;
  • Rong, Qin (Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology)
  • Received : 2018.10.26
  • Accepted : 2019.10.21
  • Published : 2019.11.10

Abstract

Foam ceramic materials contribute to the explosion effect weakening on concrete structures, due to the corresponding excellent energy absorption ability. The blast resistance of concrete members could be improved through steel-foam ceramics as protective cladding layers. An approach for the modeling of dynamic response of steel-foam ceramic protected reinforced concrete (Steel-FC-RC) slabs under blast loading was presented with the LS-DYNA software. The orthogonal analysis (five factors with five levels) under three degrees of blast loads was conducted. The influence rankings and trend laws were further analyzed. The dynamic displacement of the slab bottom was significantly reduced by increasing the thickness of steel plate, foam ceramic and RC slab, while the displacement decreased slightly as the steel yield strength and the compressive strength of concrete increased. However, the optimized efficiency of blast resistance decreases with factors increase to higher level. Moreover, an efficient design method was reported based on the orthogonal analysis.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Excellent Youth Science Foundation of Heilongjiang Province, Natural Science Foundation of the Heilongjiang Province

References

  1. Abid, M., Hou, X., Zheng, W. and Hussain, R.R. (2019), "Effect of fibers on high-temperature mechanical behavior and microstructure of reactive powder concrete", Materials, 12(2), 329. https://doi.org/10.3390/ma12020329
  2. Castedo, R., Segarra, P., Alanon, A., Lopez, L.M., Santos, A.P. and Sanchidrian, J.A. (2015), "Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation", Int. J. Impact Eng., 86, 145-156. https://doi.org/10.1016/j.ijimpeng.2015.08.004
  3. Chen, X., Chen, C., Xu, L. and Shao, Y. (2016), "Dynamic flexural strength of concrete under high strain rates", Magaz. Concrete Res., 69(3), 109-119. https://doi.org/10.1680/jmacr.15.00548
  4. Chen, X., Ge, L., Zhou, J. and Wu, S. (2017), "Dynamic Brazilian test of concrete using split Hopkinson pressure bar", Mater. Struct., 50(1), 1-10. https://doi.org/10.1617/s11527-016-0885-6
  5. Chuda-Kowalska, M. and Garstecki, A. (2016), "Experimental study of anisotropic behavior of PU foam used in sandwich panels", Steel Compos. Struct., Int. J., 20(1), 43-56. https://doi.org/10.12989/scs.2016.20.1.043
  6. Codina, R., Ambrosini, D. and de Borbon, F. (2017), "New sacrificial cladding system for the reduction of blast damage in reinforced concrete structures", Int. J. Protect. Struct., 8(2), 221-236. https://doi.org/10.1177/2041419617701571
  7. CYMAT (2008), Technical Manual for CYMAT, CYMAT Group, Canada.
  8. Dear, J.P., Rolfe, E., Kelly, M., Arora, H. and Hooper, P.A. (2017), "Blast performance of composite sandwich structures", Procedia Eng., 173, 471-478. https://doi.org/10.1016/j.proeng.2016.12.065
  9. Foglar, M., Hajek, R., Fladr, J., Pachman, J. and Stoller, J. (2017), "Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks", Constr. Build. Mater., 145, 588-601. https://doi.org/10.1016/j.conbuildmat.2017.04.054
  10. Guzas, E.L. and Earls, C.J. (2010), "Air blast load generation for simulating structural response", Steel Compos. Struct., Int. J., 10(5), 429-455. https://doi.org/10.12989/scs.2010.10.5.429
  11. Hafizi, M.N., Risby, M.S., Umar, S.T., Isa, M.F.M., Sohaimi, A.S.M. and Khalis, S. (2017), "Experimental and numerical investigation on blast wave propagation in soil structure", J. Fundam. Appl. Sci., 9(3S), 221-230. http://dx.doi.org/10.4314/jfas.v9i3s.19
  12. Hanssen, A.G., Enstock, L. and Langseth, M. (2002), "Close-range blast loading of aluminum foam panels", Int. J. Impact Eng., 27(6), 593-618. https://doi.org/10.1016/S0734-743X(01)00155-5
  13. Hao, H., Hao, Y., Li, J. and Chen, W. (2016), "Review of the current practices in blast-resistant analysis and design of concrete structures", Adv. Struct. Eng., 19(8), 1193-1223. https://doi.org/10.1177/1369433216656430
  14. Hou, X., Cao, S., Rong, Q. and Zheng, W. (2018a), "A P-I diagram approach for predicting failure modes of RPC one-way slabs subjected to blast loading", Int. J. Impact Eng., 120, 171-184. https://doi.org/10.1016/j.ijimpeng.2018.06.006
  15. Hou, X., Cao, S., Rong, Q., Zheng, W. and Li, G. (2018b), "Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete", Constr. Build. Mater., 170, 570-581. https://doi.org/10.1016/j.conbuildmat.2018.03.101
  16. Hou, X., Cao, S., Rong, Q., Zheng, W. and Li, G. (2018c), "Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates", Eng. Struct., 169, 119-130. https://doi.org/10.1016/j.engstruct.2018.05.036
  17. Hou, X., Ren, P. and Rong, Q. (2019), "Effect of fire insulation on fire resistance of hybrid-fiber reinforced reactive powder concrete beams", Compos. Struct., 209, 219-232. https://doi.org/10.1016/j.compstruct.2018.10.073
  18. Jayasooriya, R., Thambiratnam, P.D. and Perera, J.N. (2014), "Blast response and safety evaluation of a composite column for use as key element in structural systems", Eng. Struct., 61, 31-43. https://doi.org/10.1016/j.engstruct.2014.01.007
  19. Jing, L., Wang, Z. and Zhao, L. (2013), "Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading-Numerical simulations", Compos. Struct., 99(5), 213-223. https://doi.org/10.1016/j.compstruct.2012.12.013
  20. Kodur, V. (2014), "Properties of concrete at elevated temperatures", ISRN Civil Engineering, 2014,1-15. http://dx.doi.org/10.1155/2014/468510
  21. Krundaeva, A., De Bruyne, G., Gagliardi, F. and Van Paepegem, W. (2016), "Dynamic compressive strength and crushing properties of expanded polystyrene foam for different strain rates and different temperatures", Polym. Test., 55, 61-68. https://doi.org/10.1016/j.polymertesting.2016.08.005
  22. Langdon, G.S., Von Klemperer, C.J., Rowland, B.K. and Nurick, G.N. (2012), "The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments", Eng. Struct., 36, 104-112. https://doi.org/10.1016/j.engstruct.2011.11.023
  23. Li, S., Li, N. and Li, Y. (2008), "Processing and microstructure characterization of porous corundum-spinel ceramics prepared by in situ decomposition pore-forming technique", Ceram. Int., 34(5), 1241-1246. https://doi.org/10.1016/j.ceramint.2007.03.018
  24. Li, X., Huang, R., Li, Y. and Gao, G. (2013), "Experimental research of foamed ceramic composite under dynamic loading using SHPB", Adv. Mater. Res., 718-720, 112-116. https://doi.org/10.4028/www.scientific.net/AMR.718-720.112
  25. Liang, M., Lu, F., Zhang, G. and Li, X. (2017), "Design of stepwise foam claddings subjected to air-blast based on Voronoi model", Steel Compos. Struct., Int. J., 23(1), 107-114. https://doi.org/10.12989/scs.2017.23.1.107
  26. Luo, W. (2011), "Study on mechanical properties of ceramic foams and application in defense works", Master's Dissertation; University of Science and Technology of China, Hefei, China. [In Chinese]
  27. Luo, T. (2015), "Study on the Preparation Process and Antiballistic Properties of Ceramic Composite Targets Confined by Fiber", Master's Dissertation; Beijing Institute of Technology, Beijing, China, pp. 26-27. [In Chinese]
  28. LS-DYNA (2006), Keyword user's manual Livermore, Livermore Software Technology Corporation, CA, USA.
  29. Mehr, M., Davis, C., Sadman, K., Hooper, R.J., Manuel, M.V. and Nino, J.C. (2016). "Epoxy interface method enables enhanced compressive testing of highly porous and brittle materials", Ceram. Int., 42(1), 1150-1159. https://doi.org/10.1016/j.ceramint.2015.09.045
  30. Mondal, D.P., Jha, N., Badkul, A., Das, S. and Khedle, R. (2012), "High temperature compressive deformation behaviour of aluminum syntactic foam", Mater. Sci. Eng.: A, 534, 521-529. https://doi.org/10.1016/j.msea.2011.12.002
  31. Murray, Y.D., Abu-Odeh, A.Y. and Bligh, R.P. (2007), "Evaluation of LS-DYNA concrete material model 159", No. FHWA-HRT-05-063; Department of Transportation, USA.
  32. Nam, J.W., Kim, H.J., Kim, S.B., Yi, N.H. and Kim, J.H.J. (2010), "Numerical evaluation of the retrofit effectiveness for GFRP retrofitted concrete slab subjected to blast pressure", Compos. Struct., 92(5), 1212-1222. https://doi.org/10.1016/j.compstruct.2009.10.031
  33. Nie, B., He, X., Zhang, R., Chen, W. and Zhang, J. (2011), "The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation", J. Hazard. Mater., 192(2), 741-747. https://doi.org/10.1016/j.jhazmat.2011.05.083
  34. Ousji, H., Belkassem, B., Louar, M.A., Reymen, B., Pyl, L. and Vantomme, J. (2016), "Experimental study of the effectiveness of sacrificial cladding using polymeric foams as crushable core with a simply supported steel beam", Adv. Civil Eng., 2016, 1-13. http://dx.doi.org/10.1155/2016/8301517
  35. Pham, T. M., Chen, W., Kingston, J. and Hao, H. (2018), "Impact response and energy absorption of single phase syntactic foam", Compos. Part B: Eng., 150, 226-233. https://doi.org/10.1016/j.compositesb.2018.05.057
  36. Pinnoji, P.K., Mahajan, P. and Bourdet, N. (2010), "Impact dynamics of metal foam shells for motorcycle helmets: Experiments & numerical modeling", Int. J. Impact Eng., 37(3), 274-284. https://doi.org/10.1016/j.ijimpeng.2009.05.013
  37. Rashad, M. and Yang, T.Y. (2018), "Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads", Steel Compos. Struct., Int. J., 27(6), 717-725. https://doi.org/10.12989/scs.2018.27.6.717
  38. Shi, D. and Chen, X. (2018), "Flexural Tensile Fracture Behavior of Pervious Concrete under Static Preloading", J. Mater. Civil Eng., 30(11), 06018015-1-7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002477
  39. Silva, B.B.R., Santana, R.M.C and Forte, M.M.C. (2010), "A solventless castor oil-based PU adhesive for wood and foam substrates", Int. J. Adhes. Adhes., 30(7), 559-565. https://doi.org/10.1016/j.ijadhadh.2010.07.001
  40. Wei, C., Xu, M., Sun, J., Fan, H. and Xie, S. (2011) "Design and mechanics analysis of explosive-barrier devices in mining face based on ceramic foam", Proceedings of the 2nd International Conference on Artificial Intelligence, Management Science & Electronic Commerce, pp. 1050-1053. https://doi.org/10.1109/AIMSEC.2011.6010684
  41. Wu, C., Huang, L. and Oehlers, D.J. (2011), "Blast testing of aluminum foam-protected reinforced concrete slabs", J. Perform. Constr. Facil., 25(5), 464-474. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000163
  42. Xia, Y., Wu, C., Zhang, F., Li, Z.X. and Bennett, T. (2014), "Numerical analysis of foam-protected RC members under blast load", Int. J. Protect. Struct., 5(4), 367-390. https://doi.org/10.1260/2041-4196.5.4.367
  43. Xia, Y., Wu, C., Liu, Z.X. and Yuan, Y. (2016), "Protective effect of graded density aluminum foam on RC slab under blast loading-An experimental study", Constr. Build. Mater., 111, 209-222. https://doi.org/10.1016/j.conbuildmat.2016.02.092
  44. Xu, J. and Lu, Y. (2013), "A comparative study of modelling RC slab response to blast loading with two typical concrete material models", Int. J. Protect. Struct., 4(3), 415-432. https://doi.org/10.1260/2041-4196.4.3.415
  45. Ye, Z.B., Li, Y.C., Zhao, K., Huang, R.Y., Zhang, Y.L. and Sun, X.W. (2018), "New form of equivalent constitutive model for combined shell particle composites and its application in civil air defense", Int. J. Civil Eng., 17(5), 555-561. https://doi.org/10.1007/s40999-018-0324-x
  46. Zake-Tiluga, I., Svinka, V., Svinka, R. and Grase, L. (2015). "Thermal shock resistance of porous Al2O3-mullite ceramics", Ceram. Int., 41(9), 11504-11509. https://doi.org/10.1016/j.ceramint.2015.05.116
  47. Zhang, J.F., Liang, X.M., Ma, Z.Y., Yang, Y.Y., Liang, J.J., Zhu, H.Y., Wang, T.W. and Wang, S.J. (2011), "Study on chain scission of gas explosion reaction in foam ceramics", Procedia Eng., 26, 2369-2375. https://doi.org/10.1016/j.proeng.2011.11.2447
  48. Zhou, D., Li, R., Wang, J. and Guo, C. (2017), "Study on Impact Behavior and Impact Force of Bridge Pier Subjected to Vehicle Collision", Shock Vib., 2017, 1-12. https://doi.org/10.1155/2017/7085392
  49. Zhu, C., Lin, Z.T.L., Chia, Y.F. and Chong, K.P. (2009), "Protection of reinforced concrete structures against blast loading", Final Year Research Project Report; The University of Adelaide, Adelaide, Australia.