DOI QR코드

DOI QR Code

Hygro-thermal post-buckling analysis of a functionally graded beam

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University)
  • 투고 : 2019.05.10
  • 심사 : 2019.10.23
  • 발행 : 2019.10.25

초록

This paper presents post-buckling analysis of a functionally graded beam under hygro-thermal effect. The material properties of the beam change though height axis with a power-law function. In the nonlinear kinematics of the post-buckling problem, the total Lagrangian approach is used. In the solution of the problem, the finite element method is used within plane solid continua. In the nonlinear solution, the Newton-Raphson method is used with incremental displacements. Comparison studies are performed. In the numerical results, the effects of the material distribution, the geometry parameters, the temperature and the moisture changes on the post-buckling responses of the functionally graded beam are presented and discussed.

키워드

참고문헌

  1. Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219.
  2. Akbarzadeh, A.H. and Chen, Z.T. (2013), "Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field", Compos. Struct., 97, 317-331. https://doi.org/10.1016/j.compstruct.2012.09.058.
  3. Akbas, S.D. (2014), "Large post-buckling behavior of Timoshenko beams under axial compression loads", Struct. Eng. Mech., 51(6), 955-971. https://doi.org/10.12989/sem.2014.51.6.955.
  4. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. http://dx.doi.org/10.12989/scs.2015.19.6.1421.
  5. Akbas, S.D. (2017a), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  6. Akbas, S.D. (2017b), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
  7. Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
  8. Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  9. Akbas, S.D. (2018c), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
  10. Akbas, S.D. (2019), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. https://dx.doi.org/10.22055/jacm.2018.26819.1360.
  11. Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.
  12. Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stress., 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
  13. Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
  14. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of SFGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  15. Ebrahimi, F. and Habibi, S. (2018), "Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments", Mech. Adv. Mater. Struct., 25(5), 425-438. https://doi.org/10.1080/15376494.2017.1285453.
  16. Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
  17. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  18. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  19. Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347.
  20. Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775.
  21. Laoufi, I., Ameur, M., Zidi, M., Bedia, E.A.A. and Bousahla, A.A. (2016), "Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., 20(4), 889-911. https://doi.org/10.12989/scs.2016.20.4.889.
  22. Lee, C.Y. and Kim, J.H. (2013), "Hygrothermal postbuckling behavior of functionally graded plates", Compos. Struct., 95, 278-282. https://doi.org/10.1016/j.compstruct.2012.07.010.
  23. Li, S.R., Zhang, J.H. Zhao, Y.G. (2006), "Thermal post-buckling of functionally graded material Timoshenko beams", Appl. Math. Mech., 26(6), 803-810. https://doi.org/10.1007/s10483-006-0611-y.
  24. Mohammadimehr, M., Salemi, M. and Navi, B.R. (2016), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055.
  25. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new twounknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  26. Nguyen, T.K., Nguyen, B.D., Vo, T.P. and Thai, H.T. (2017), "Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams", Compos. Struct., 176, 1050-1060. https://doi.org/10.1016/j.compstruct.2017.06.036.
  27. Radwan, A.F. (2019), "Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory", J. Sandw. Struct. Mater., 21(1), 289-319. https://doi.org/10.1177%2F1099636217693557. https://doi.org/10.1177/1099636217693557
  28. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6) 593-626. https://doi.org/10.1080/01495739808956165.
  29. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
  30. Zenkour, A. (2013), "Hygrothermal analysis of exponentially graded rectangular plates", J. Mech. Mater. Struct., 7(7), 687-700. http://dx.doi.org/10.2140/jomms.2012.7.687.

피인용 문헌

  1. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
  2. Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2019, https://doi.org/10.12989/scs.2020.36.3.293
  3. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  4. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2019, https://doi.org/10.12989/cac.2021.27.1.073