References
- Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219.
- Akbarzadeh, A.H. and Chen, Z.T. (2013), "Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field", Compos. Struct., 97, 317-331. https://doi.org/10.1016/j.compstruct.2012.09.058.
- Akbas, S.D. (2014), "Large post-buckling behavior of Timoshenko beams under axial compression loads", Struct. Eng. Mech., 51(6), 955-971. https://doi.org/10.12989/sem.2014.51.6.955.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. http://dx.doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2017a), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
- Akbas, S.D. (2017b), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
- Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
- Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Akbas, S.D. (2018c), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.
- Akbas, S.D. (2019), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. https://dx.doi.org/10.22055/jacm.2018.26819.1360.
- Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.
- Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stress., 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
- Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
- Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of SFGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
- Ebrahimi, F. and Habibi, S. (2018), "Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments", Mech. Adv. Mater. Struct., 25(5), 425-438. https://doi.org/10.1080/15376494.2017.1285453.
- Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
- Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
- Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347.
- Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775.
- Laoufi, I., Ameur, M., Zidi, M., Bedia, E.A.A. and Bousahla, A.A. (2016), "Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., 20(4), 889-911. https://doi.org/10.12989/scs.2016.20.4.889.
- Lee, C.Y. and Kim, J.H. (2013), "Hygrothermal postbuckling behavior of functionally graded plates", Compos. Struct., 95, 278-282. https://doi.org/10.1016/j.compstruct.2012.07.010.
- Li, S.R., Zhang, J.H. Zhao, Y.G. (2006), "Thermal post-buckling of functionally graded material Timoshenko beams", Appl. Math. Mech., 26(6), 803-810. https://doi.org/10.1007/s10483-006-0611-y.
- Mohammadimehr, M., Salemi, M. and Navi, B.R. (2016), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055.
- Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new twounknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
- Nguyen, T.K., Nguyen, B.D., Vo, T.P. and Thai, H.T. (2017), "Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams", Compos. Struct., 176, 1050-1060. https://doi.org/10.1016/j.compstruct.2017.06.036.
- Radwan, A.F. (2019), "Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory", J. Sandw. Struct. Mater., 21(1), 289-319. https://doi.org/10.1177%2F1099636217693557. https://doi.org/10.1177/1099636217693557
- Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6) 593-626. https://doi.org/10.1080/01495739808956165.
- Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
- Zenkour, A. (2013), "Hygrothermal analysis of exponentially graded rectangular plates", J. Mech. Mater. Struct., 7(7), 687-700. http://dx.doi.org/10.2140/jomms.2012.7.687.
Cited by
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2019, https://doi.org/10.12989/scs.2020.36.3.293
- Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2019, https://doi.org/10.12989/cac.2021.27.1.073