References
- ACI 228.2R-98 (2004), Nondestructive test methods for evaluation of concrete in structures. American Concrete Institute; Farmington Hills, MI. USA.
- ACI Committee 216 (1989), Guide for determining the fire endurance of concrete elements (ACI 216R-89), American Concrete Institute; Farmington Hills, MI. USA.
- Albano, C., Camacho, N., Hernandez, M., Matheus, A. and Gutierrez, A. (2009), "Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios", Waste Management, 29(10), 2707-2716. https://doi.org/10.1016/j.wasman.2009.05.007.
- Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire Safety J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003.
- ASTM C192/C192M (2002), Standard practice for making and curing concrete test specimens in the laboratory, American Society for Testing and Materials; Philadelphia, PA, USA.
- ASTM C33 (2003), Standard specification for concrete aggregates, American Society for Testing and Materials; Philadelphia, PA, USA.
- ASTM C494 (2016), Standard specification for chemical admixtures for concrete, American Society for Testing and Materials; Philadelphia, PA, USA.
- ASTM C597 (2016), Standard test method for pulse velocity through concrete, American Society for Testing and Materials; Philadelphia, PA, USA.
- Bakharev, T. (2006), "Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing", Cement Concrete Res., 36(6), 1134-1147. https://doi.org/10.1016/j.cemconres.2006.03.022.
- Baradaran-Nasiri, A. and Nematzadeh, M. (2017), "The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and aluminate cement", Construct. Build. Mater., 147, 865-875. https://doi.org/10.1016/j.conbuildmat.2017.04.138.
- Bastami, M., Baghbadrani, M. and Aslani, F. (2014). "Performance of nano-Silica modified high strength concrete at elevated temperatures", Construct. Build. Mater., 68, 402-408. https://doi.org/10.1016/j.conbuildmat.2014.06.026.
- BS 1881-116 (1983), Testing concretes. Method for determination of compressive strength of concrete cubes, British Standards Institution; London, UK.
- Cheng, F.P., Kodur, V.K.R. and Wang, T.C. (2004), "Stress-strain curves for high strength concrete at elevated temperatures", J. Mater. Civil Eng., 16(1), 84-90. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(84).
- Chindaprasirt, P., Chareerat, T., Hatanaka, S. and Cao, T. (2010), "High-strength geopolymer using fine high-calcium fly ash", J. Mater. Civil Eng., 23(3), 264-270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000161.
- Cree, D., Green, M. and Noumowe, A. (2013), "Residual strength of concrete containing recycled materials after exposure to fire: A review", Construct. Build. Mater., 45, 208-223. https://doi.org/10.1016/j.conbuildmat.2013.04.005.
- EN 1994-1-2: Eurocode 4 (2004). Design of composite steel and concrete structures-Part 1-2: General rules for structural fire design, European Committee for Standardization; Brussels, Belgium.
- Fernandez-Jimenez, A., Palomo, A., Pastor, J.Y. and Martin, A. (2008), "New cementitious materials based on alkali-activated fly ash: performance at high temperatures", J. American Ceramic Soc., 91(10), 3308-3314. https://doi.org/10.1111/j.1551-2916.2008.02625.x.
- Fernandez-Jimenez, A., Pastor, J.Y., Martin, A. and Palomo, A. (2010), "High-Temperature Resistance in Alkali-Activated Cement", J. American Ceramic Soc., 93(10), 3411-3417. https://doi.org/10.1111/j.1551-2916.2010.03887.x.
- Gul, R., Demirboga, R. and Guvercin, T. (2006), "Compressive strength and ultrasound pulse velocity of mineral admixtured mortars", Indian J. Eng. Mater. Sci., 13(1), 18-24. http://nopr.niscair.res.in/handle/123456789/7210.
- Hansen, T. C. (2014), Recycling of Demolished Concrete and Masonry, CRC Press, Florida, USA.
- Hasan-Nattaj, F. and Nematzadeh, M. (2017), "The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica", Construct. Build. Mater., 137, 557-572. https://doi.org/10.1016/j.conbuildmat.2017.01.078.
- IS 13311-1 (1992), Non-destructive testing of concrete - methods of tests, Bureau of Indian Standard; New Delhi, India.
- Jalal, M. (2014), "Corrosion resistant self-compacting concrete using micro and nano silica admixtures", Struct. Eng. Mech., 51(3), 403-412. https://doi.org/10.12989/sem.2014.51.3.403.
- Khalaf, F.M. and DeVenny, A.S. (2004), "Recycling of demolished masonry rubble as coarse aggregate in concrete", J. Mater. Civil Eng., 16(4), 331-340. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:4(331).
- Khalaf, F. M. and DeVenny, A. S. (2005), "Properties of new and recycled clay brick aggregates for use in concrete", J. Mater. Civil Eng., 17(4), 456-464. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(456).
- Khan, M.S. and Abbas, H. (2015), "Effect of elevated temperature on the behavior of high volume fly ash concrete", KSCE J. Civil Eng., 19(6), 1825-1831. https://doi.org/10.1007/s12205-014-1092-z.
- Kurda, R., de Brito, J. and Silvestre, J.D. (2017), "Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties", Construct. Build. Mater., 157, 554-572. https://doi.org/10.1016/j.conbuildmat.2017.09.128.
- Li, H., Xiao, H. G., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nano-particles", Composites Part B Eng., 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0.
- Liu, Y., Wang, W., Chen, Y.F. and Ji, H. (2016), "Residual stress-strain relationship for thermal insulation concrete with recycled aggregate after high temperature exposure", Construct. Build. Mater., 129, 37-47. https://doi.org/10.1016/j.conbuildmat.2016.11.006.
- Mahdavi, M., Abolmaali, A. and Ghahremannejad, M. (2018), "The effects of pH and temperature on compressive strength of synthetic fiber-reinforced concrete cylinders exposed to sulfuric acid", Adv. Civil Eng. Mater., 7(1), 403-413. https://doi.org/10.1520/ACEM20180018.
- Martin, A., Pastor, J.Y., Palomo, A. and Jimenez, A.F. (2015), "Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers)", Construct. Build. Mater., 93, 1188-1196. https://doi.org/10.1016/j.conbuildmat.2015.04.044.
- Mousa, M.I. (2017), "Effect of elevated temperature on the properties of silica fume and recycled rubber-filled high strength concretes (RHSC)" HBRC J., 13(1), 1-7. https://doi.org/10.1016/j.hbrcj.2015.03.002.
- Nematzadeh, M. and Baradaran-Nasiri, A. (2017), "Residual properties of concrete containing recycled refractory brick aggregate at elevated temperatures", J. Mater. Civil Eng., 30(1), https://doi.org/10.1061/(ASCE)MT.1943-5533.0002125.
- Nematzadeh, M. and Fallah-Valukolaee, S. (2017), "Effectiveness of fibers and binders in high-strength concrete under chemical corrosion", Struct. Eng. Mech., 64(2), 243-257. https://doi.org/10.12989/sem.2017.64.2.243.
- Nematzadeh, M. and Mousavimehr, M. (2019), "Residual Compressive Stress-Strain Relationship for Hybrid Recycled PET-Crumb Rubber Aggregate Concrete after Exposure to Elevated Temperatures", J. Mater. Civil Eng., 31(8). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002749.
- Nik, A.S. and Omran, O.L. (2013), "Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity", Construct. Build. Mater., 44, 654-662. https://doi.org/10.1016/j.conbuildmat.2013.03.082.
- Peng, G.F., Yang, W.W., Zhao, J., Liu, Y.F., Bian, S.H. and Zhao, L.H. (2006), "Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures", Cement Concrete Res., 36(4), 723-727. https://doi.org/10.1016/j.cemconres.2005.12.014.
- Rashiddadash, P., Ramezanianpour, A.A. and Mahdikhani, M. (2014), "Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice", Construct. Build. Mater., 51, 313-320. https://doi.org/10.1016/j.conbuildmat.2013.10.087.
- Saavedra, W.G.V. and de Gutierrez, R.M. (2017), "Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures", Construct. Build. Mater., 154, 229-235. https://doi.org/10.1016/j.conbuildmat.2017.07.208.
- Sagoe-Crentsil, K.K., Brown, T. and Taylor, A.H. (2001), "Performance of concrete made with commercially produced coarse recycled concrete aggregate", Cement Concrete Res., 31(5), 707-712. https://doi.org/10.1016/S0008-8846(00)00476-2.
- Sarhat, S.R. and Sherwood, E.G. (2012), "Residual mechanical response of recycled aggregate concrete after exposure to elevated temperatures", J. Mater. Civil Eng., 25(11), 1721-1730. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000719.
- Wang, W., Lu, C., Li, Y. and Li, Q. (2017), "An investigation on thermal conductivity of fly ash concrete after elevated temperature exposure", Construct. Build. Mater., 148, 148-154. https://doi.org/10.1016/j.conbuildmat.2017.05.068.
- Xiao, J., Li, J. and Zhang, C. (2005), "Mechanical properties of recycled aggregate concrete under uniaxial loading", Cement Concrete Res., 35(6), 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020.
- Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior of fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.