References
- Arash, B., Wang, Q. and Liew, K.M. (2012), "Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation", Comput. Methods Appl. Mech. Eng., 223-224, 1-9. https://doi.org/10.1016/j.cma.2012.02.002.
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0.
- Ebrahimi, F. and Barati, M.R. (2018), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci.,107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stresses,40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483.
- Ebrahimi, F. and Salari, E. (2015), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci, 105(2), 151-181.
- Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intelligent Mater. Syst. Struct., 28(11), 1472-1490. https://doi.org/10.1177/1045389X16672569.
- Ebrahimi, F. and Dabbagh, A. (2017c), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates", Mater. Res. Exp., 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5.
- Eltaher, M., Alshorbagy, A.E. and Mahmoud, F. (2013), "Vibration analysis of euler-bernoulli nanobeams by using finite element method", Appl Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.
- Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", J. Eng. Sci.,10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys.,54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Farajpour, A., Yazdi, M.H., Rastgoo, A. and Mohammadi, M. (2016), "A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment", Acta Mechanica, 227(7), 1849-1867. https://doi.org/10.1007/s00707-016-1605-6.
- Fleck, N. and Hutchinson, J. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids,41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N.
- Arani, A.G., Haghparast, E. and Zarei, H.B. (2016), "Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-pasternak foundation under longitudinal magnetic field", Physica B, 495, 35-49. https://doi.org/10.1016/j.physb.2016.04.039.
- Arani, A.G. and M. Jalaei (2016), "Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach", J. Eng. Math., 98(1), 129-144. https://doi.org/10.1007/s10665-015-9814-x.
- Hadji, L. (2017a), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst., 19(4), 441-448. https://doi.org/10.12989/sss.2017.19.4.441.
- Hadji, L., Zouatnia, N. and Kassoul, A. (2017b), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143.
- Hadji, L., Ait Amar Meziane, M., and Safa, A., (2018), "A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 66(6), 771-781. https://doi.org/10.12989/sem.2018.66.6.771.
- Khelifa, Z., Hadji, L., Hassaine Daouadji, T., and Bourada, M., (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
- Lam, D. Yang, C.F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids,51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321(5887), 385-388. https://doi.org/10.1126/science.1157996
- Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", J. Eng. Sci.,97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
- Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids,78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Liu, H. and Yang, J.L. (2012), "Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity", Physica E, 44(7), 1236-1240. https://doi.org/10.1016/j.physe.2012.01.018.
- Malekzadeh, P., Setoodeh, A. and Beni, A. A. (2011), "Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates", Composite Structures, 93(7), 1631-1639. https://doi.org/10.1016/j.compstruct.2011.01.008.
- Murmu, T., McCarthy, M.A. and Adhikari, S. (2013), "In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach", Compos. Struct., 96, 57-63. https://doi.org/10.1016/j.compstruct.2012.09.005.
- Murmu, T. and Pradhan, S. (2009), "Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory", J. Appl. Phys., 105(6), https://doi.org/10.1063/1.3091292.
- Narendar S. and Gopalakrishnan, S. (2012a), "Study of terahertz wave propagation properties in nanoplates with surface and small-scale effects", J. Mech. Sci., 64(1), 221-231. https://doi.org/10.1016/j.ijmecsci.2012.06.012.
- Narendar S. and Gopalakrishnan, S. (2012b), "Temperature effects on wave propagation in nanoplates", Composites Part B, 43(3), 1275-1281. https://doi.org/10.1016/j.compositesb.2011.11.029.
- Natarajan S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci.,65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
- Larbi, L.O., Hadji, L., Meziane, M. A.A. and Adda Bedia, E.A. (2018), "An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory", Wind Struct., 27(4), 247-254. https://doi.org/10.12989/was.2018.27.4.247.
- Pradhan S. and T. Murmu (2010), "Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory", Physica E,42(5), 1293-1301. https://doi.org/10.1016/j.physe.2009.10.053.
- Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93(2), 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004.
- Rouhi S. and Ansari, R. (2012), "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets", Physica E, 44(4), 764-772. https://doi.org/10.1016/j.physe.2011.11.020.
- Seol J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z., Pettes, M., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R. and Shi, L. (2010), "Two-dimensional phonon transport in supported graphene", Science, 328(5975), 213-216. https://doi.org/10.1126/science.1184014.
- Wang, Q. and Varadan, V. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart Mater. Struct.,16(1), 178. https://doi.org/10.1088/0964-1726/16/1/022.
- Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010), "Scale effects on the longitudinal wave propagation in nanoplates", Physica E,42(5),1356-1360. ttps://doi.org/10.1016/j.physe.2009.11.036.
- Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Phys. A,123(6), 388. https://doi.org/10.1007/s00339-017-1007-1.
- Zouatnia, N., Hadji, L. and Kassoul, A. (2017), "An analytical solution for bending and vibration responses of functionally graded beams with porosities", Wind Struct., 25(4), 329-342. https://doi.org/10.12989/was.2017.25.4.329.
- Zenkour, A.M. (2016), "Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium", Physica E, 79, 87-97. https://doi.org/10.1016/j.physe.2015.12.003.
Cited by
- Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature vol.78, pp.1, 2019, https://doi.org/10.12989/sem.2021.78.1.023