과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province, Central Universities
참고문헌
- Abbasi, M., Bagheri, B., Ketabchi, M. and Haghshenas, D. (2012), "Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank", Comput. Mater. Sci., 53(1), 368-376. https://doi.org/10.1016/j.commatsci.2011.08.020.
- Abbassi, F., Belhadj, T., Mistou, S. and Zghal, A. (2013), "Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming", Mater. Design, 45, 605-615. https://doi.org/10.1016/j.matdes.2012.09.032.
- Abdelrahman, M., ElBatanouny, M.K., Ziehl, P., Fasl, J., Larosche, C.J. and Fraczek, J. (2015), "Classification of alkali-silica reaction damage using acoustic emission: A proof-ofconcept study", Constr. Build. Mater., 95, 406-413. https://doi.org/10.1016/j.conbuildmat.2015.07.093.
- Abendroth, M. and Kuna, M. (2003), "Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks", Comput. Mater. Sci., 28(3), 633-644. https://doi.org/10.1016/j.commatsci.2003.08.031.
- Aggelis, D.G. (2016), Acoustic Emission Analysis for NDE in Concrete, Springer, Dordrecht, Netherlands.
- Aker, E., Kuhn, D., Vavrycuk, V., Soldal, M. and Oye, V. (2014), "Experimental investigation of acoustic emissions and their moment tensors in rock during failure", Int. J. Rock Mech. Min. Sci., 70, 286-295. https://doi.org/10.1016/j.ijrmms.2014.05.003.
- Benseddiq, N. and Imad, A. (2008), "A ductile fracture analysis using a local damage model", Int. J. Press. Vessels Pip., 85(4), 219-227. https://doi.org/10.1016/j.ijpvp.2007.09.003.
- Chai, M., Zhang, Z., Duan, Q. and Song, Y. (2018), "Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy", Int. J. Fatigue, 109, 145-156. https://doi.org/10.1016/j.ijfatigue.2017.12.017.
- Chou, H., Mouritz, A., Bannister, M. and Bunsell, A. (2015), "Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure", Compos. Part A-Appl. S., 70, 111-120. https://doi.org/10.1016/j.compositesa.2014.11.027.
- Diamanti, K. and Soutis, C. (2010), "Structural health monitoring techniques for aircraft composite structures", Prog. Aerosp. Sci., 46(8), 342-352. https://doi.org/10.1016/j.paerosci.2010.05.001.
- El-Thalji, I. and Jantunen, E. (2015), "A summary of fault modelling and predictive health monitoring of rolling element bearings", Mech. Syst. Sig. Process., 60-61, 252-272. https://doi.org/10.1016/j.ymssp.2015.02.008.
- Elfergani, H.A., Pullin, R. and Holford, K.M. (2013), "Damage assessment of corrosion in prestressed concrete by acoustic emission", Constr. Build. Mater., 40, 925-933. https://doi.org/10.1016/j.conbuildmat.2012.11.071.
- Franklin, A.G. (1969), "Comparison between a quantitative microscope and chemical methods for assessment of nonmetallic inclusions", J. Iron Steel I., 207, 181-186.
-
Friesel, M.A. and Carpenter, S.H. (1984), "An inverted strain rate dependence of the acoustic emission generated during the deformation of high purity
${\alpha}$ -Ti", Mater. Sci. Eng., 68(1), 107-111. https://doi.org/10.1016/0025-5416(84)90248-9. - Gholizadeh, S., Leman, Z. and Baharudin, B.T.H.T. (2015), "A review of the application of acoustic emission technique in engineering", Struct. Eng. Mech., 54(6), 1075-1095. http://dx.doi.org/10.12989/sem.2015.54.6.1075.
- Gurson, A.L. (1977), "Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media", J. Eng. Mater. Technol., 99, 2-15. https://doi.org/10.1115/1.3443401.
- Han, Z., Luo, H. and Wang, H. (2011), "Effects of strain rate and notch on acoustic emission during the tensile deformation of a discontinuous yielding material", Mater. Sci. Eng. A, 528(13), 4372-4380. https://doi.org/10.1016/j.msea.2011.02.042.
- He, M., Li, F. and Wang, Z. (2011), "Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test", Chin. J. Aeronaut., 24(3), 378-386. https://doi.org/10.1016/S1000-9361(11)60045-9.
- Holcomb, D. (1993), "General theory of the Kaiser effect", Int. J. Rock Mech. Min., 30(7), 929-935. https://doi.org/10.1016/0148-9062(93)90047-H.
- Holt, J. and Goddard, D. (1980), "Acoustic emission during the elastic-plastic deformation of low alloy reactor pressure vessel steels I: Uniaxial tension", Mat. Sci. Eng., 44(2), 251-265. https://doi.org/10.1016/0025-5416(80)90125-1.
- Horvath, K., Drozdenko, D., Mathis, K., Bohlen, J. and Dobron, P. (2016), "Deformation behavior and acoustic emission response on uniaxial compression of extruded rectangular profile of Mg-Zn-Zr alloy", J. Alloys Compd., 680, 623-632. https://doi.org/10.1016/j.jallcom.2016.03.310.
- James, D.R. and Carpenter, S.H. (1971), "Relationship between acoustic emission and dislocation kinetics in crystalline solids", J. Appl. Phys., 42(12), 4685-4697. https://doi.org/10.1063/1.1659840.
- Kiran, R. and Khandelwal, K. (2014), "Gurson model parameters for ductile fracture simulation in ASTM A992 steels", Fatigue Fract. Eng. M., 37(2), 171-183. https://doi.org/10.1111/ffe.12097.
- Kumar, J., Punnose, S., Mukhopadhyay, C.K., Jayakumar, T. and Kumar, V. (2012), "Acoustic emission during tensile deformation of smooth and notched specimens of near alpha titanium alloy", Res. Nondestr. Eval., 23(1), 17-31. https://doi.org/10.1080/09349847.2011.622068
- Mcclintock, F.A. (1968), "A criterion for ductile fracture by the growth of holes", J. Appl. Mech., 35(2), 363-371. https://doi.org/10.1115/1.3601204.
- Mi, C., Buttry, D.A., Sharma, P. and Kouris, D.A. (2011), "Atomistic insights into dislocation-based mechanisms of void growth and coalescence", J. Mech. Phys. Solids, 59(9), 1858-1871. https://doi.org/10.1016/j.jmps.2011.05.008.
- Montgomery, D.C. (2013), Design and Analysis of Experiments, (8th Edition), John Wiley & Sons, New York, NY, USA.
- Moorthy, V., Jayakumar, T. and Raj, B. (1995), "Acoustic emission technique for detecting micro- and macroyielding in solution-annealed AISI Type 316 austenitic stainless steel", Int. J. Press. Vessels Pip., 64(2), 161-168. https://doi.org/10.1016/0308-0161(94)00154-B.
- Mukhopadhyay, C.K., Jayakumar, T., Raj, B. and Ray, K.K. (2007), "Acoustic emission during tensile deformation of pre-strained nuclear grade AISI Type 304 stainless steel in the unnotched and notched conditions", J. Mater. Sci., 42(14), 5647-5656. https://doi.org/10.1007/s10853-006-1273-3.
- Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2012), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, (4th Edition), Wiley, New York, NY, USA.
- Nair, A. and Cai, C. (2010), "Acoustic emission monitoring of bridges: Review and case studies", Eng. Struct., 32(6), 1704-1714. https://doi.org/10.1016/j.engstruct.2010.02.020.
- Njuhovic, E., Brau, M., Wolff-Fabris, F., Starzynski, K. and Altstadt, V. (2015), "Identification of failure mechanisms of metallised glass fibre reinforced composites under tensile loading using acoustic emission analysis", Compos. Part B-Eng., 81, 1-13. https://doi.org/10.1016/j.compositesb.2015.06.018.
- Oral, A., Anlas, G. and Lambros, J. (2012), "Determination of Gurson-Tvergaard-Needleman model parameters for failure of a polymeric material", Int. J. Damage Mech., 21(1), 3-25. https://doi.org/10.1177%2F1056789510385261. https://doi.org/10.1177/1056789510385261
- Qiu, F., Dai, G. and Zhang, Y. (2017), "Application of an acoustic emission quantitative method to evaluate oil tank bottom corrosion based on corrosion risk pace", Brit. J. Nondestr. Test, 59(12), 653-658. https://doi.org/10.1784/insi.2017.59.12.653.
- Rehman, S.K.U., Ibrahim, Z., Memon, S.A. and Jameel, M. (2016), "Nondestructive test methods for concrete bridges: A review", Constr. Build. Mater., 107, 58-86. https://doi.org/10.1016/j.conbuildmat.2015.12.011.
- Rice, J. and Tracey, D. (1969), "On the ductile enlargement of voids in triaxial stress fields", J. Mech. Phys. Solids, 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7.
- Springmann, M. and Kuna, M. (2005), "Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques", Comp. Mater. Sci., 33(4), 501-509. https://doi.org/10.1016/j.commatsci.2005.02.002.
- Springmann, M. and Kuna, M. (2006), "Determination of ductile damage parameters by local deformation fields: Measurement and simulation", Arch. Appl. Mech., 75(10), 775-797. https://doi.org/10.1007/s00419-006-0033-9.
- Tang, C. (1990), "Evolution and propagation of material defects and Kaiser effect function", J. Seismol. Res., 13(2), 203-213.
- Tvergaard, V. and Needleman, A. (1984), "Analysis of the cup-cone fracture in a round tensile bar", Acta Metall., 32(1), 157-169. https://doi.org/10.1016/0001-6160(84)90213-X.
- Uthaisangsuk, V., Prahl, U., Munstermann, S. and Bleck, W. (2008), "Experimental and numerical failure criterion for formability prediction in sheet metal forming", Comp. Mat. Sci., 43(1), 43-50. https://doi.org/10.1016/j.commatsci.2007.07.036.
- Wang, L.Y. and Li, L. (2017), "Parameter identification of GTN model using response surface methodology for high-strength steel BR1500HS", J. Mater. Eng. Perform., 26(8), 3831-3838. https://doi.org/10.1007/s11665-017-2806-4.
- Yu, J., Ziehl, P., Zarate, B. and Caicedo, J. (2011), "Prediction of fatigue crack growth in steel bridge components using acoustic emission", J. Constr. Steel Res., 67(8), 1254-1260. https://doi.org/10.1016/j.jcsr.2011.03.005.
- Zanganeh, M., Pinna, C. and Yates, J.R. (2013), "Void growth and coalescence modelling in AA2050 using the Rousselier model", Int. J. Damage Mech., 22(2), 219-237. https://doi.org/10.1177/1056789512441808.
-
Zhang, K., Hua, L., Zheng, C. and Radon, J. (1989), "A computer simulation of ductile fracture initiation in TPB specimen: An application of
$V_{gc}$ criterion", Eng. Fract. Mech., 33(5), 671-677. https://doi.org/10.1016/0013-7944(89)90065-9. - Zhang, Z.L. and Skallerud, B. (2010), "Void coalescence with and without prestrain history", Int. J. Damage Mech., 19(2), 153-174. https://doi.org/10.1177%2F1056789508101919. https://doi.org/10.1177/1056789508101919
- Zhong, J., Xu, T., Guan, K. and Zou, B. (2016), "Determination of ductile damage parameters using hybrid particle swarm optimization", Exp. Mech., 56(6), 945-955. https://doi.org/10.1007/s11340-016-0141-6.
- Zou, S., Yan, F., Yang, G. and Sun, W. (2017), "The identification of the deformation stage of a metal specimen based on acoustic emission data analysis", Sensors, 17(4), 789(1-13). https://doi.org/10.3390/s17040789.