DOI QR코드

DOI QR Code

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin (Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University) ;
  • Mi, Changwen (Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University)
  • Received : 2018.12.26
  • Accepted : 2019.06.02
  • Published : 2019.11.10

Abstract

Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province, Central Universities

References

  1. Abbasi, M., Bagheri, B., Ketabchi, M. and Haghshenas, D. (2012), "Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank", Comput. Mater. Sci., 53(1), 368-376. https://doi.org/10.1016/j.commatsci.2011.08.020.
  2. Abbassi, F., Belhadj, T., Mistou, S. and Zghal, A. (2013), "Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming", Mater. Design, 45, 605-615. https://doi.org/10.1016/j.matdes.2012.09.032.
  3. Abdelrahman, M., ElBatanouny, M.K., Ziehl, P., Fasl, J., Larosche, C.J. and Fraczek, J. (2015), "Classification of alkali-silica reaction damage using acoustic emission: A proof-ofconcept study", Constr. Build. Mater., 95, 406-413. https://doi.org/10.1016/j.conbuildmat.2015.07.093.
  4. Abendroth, M. and Kuna, M. (2003), "Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks", Comput. Mater. Sci., 28(3), 633-644. https://doi.org/10.1016/j.commatsci.2003.08.031.
  5. Aggelis, D.G. (2016), Acoustic Emission Analysis for NDE in Concrete, Springer, Dordrecht, Netherlands.
  6. Aker, E., Kuhn, D., Vavrycuk, V., Soldal, M. and Oye, V. (2014), "Experimental investigation of acoustic emissions and their moment tensors in rock during failure", Int. J. Rock Mech. Min. Sci., 70, 286-295. https://doi.org/10.1016/j.ijrmms.2014.05.003.
  7. Benseddiq, N. and Imad, A. (2008), "A ductile fracture analysis using a local damage model", Int. J. Press. Vessels Pip., 85(4), 219-227. https://doi.org/10.1016/j.ijpvp.2007.09.003.
  8. Chai, M., Zhang, Z., Duan, Q. and Song, Y. (2018), "Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy", Int. J. Fatigue, 109, 145-156. https://doi.org/10.1016/j.ijfatigue.2017.12.017.
  9. Chou, H., Mouritz, A., Bannister, M. and Bunsell, A. (2015), "Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure", Compos. Part A-Appl. S., 70, 111-120. https://doi.org/10.1016/j.compositesa.2014.11.027.
  10. Diamanti, K. and Soutis, C. (2010), "Structural health monitoring techniques for aircraft composite structures", Prog. Aerosp. Sci., 46(8), 342-352. https://doi.org/10.1016/j.paerosci.2010.05.001.
  11. El-Thalji, I. and Jantunen, E. (2015), "A summary of fault modelling and predictive health monitoring of rolling element bearings", Mech. Syst. Sig. Process., 60-61, 252-272. https://doi.org/10.1016/j.ymssp.2015.02.008.
  12. Elfergani, H.A., Pullin, R. and Holford, K.M. (2013), "Damage assessment of corrosion in prestressed concrete by acoustic emission", Constr. Build. Mater., 40, 925-933. https://doi.org/10.1016/j.conbuildmat.2012.11.071.
  13. Franklin, A.G. (1969), "Comparison between a quantitative microscope and chemical methods for assessment of nonmetallic inclusions", J. Iron Steel I., 207, 181-186.
  14. Friesel, M.A. and Carpenter, S.H. (1984), "An inverted strain rate dependence of the acoustic emission generated during the deformation of high purity ${\alpha}$-Ti", Mater. Sci. Eng., 68(1), 107-111. https://doi.org/10.1016/0025-5416(84)90248-9.
  15. Gholizadeh, S., Leman, Z. and Baharudin, B.T.H.T. (2015), "A review of the application of acoustic emission technique in engineering", Struct. Eng. Mech., 54(6), 1075-1095. http://dx.doi.org/10.12989/sem.2015.54.6.1075.
  16. Gurson, A.L. (1977), "Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media", J. Eng. Mater. Technol., 99, 2-15. https://doi.org/10.1115/1.3443401.
  17. Han, Z., Luo, H. and Wang, H. (2011), "Effects of strain rate and notch on acoustic emission during the tensile deformation of a discontinuous yielding material", Mater. Sci. Eng. A, 528(13), 4372-4380. https://doi.org/10.1016/j.msea.2011.02.042.
  18. He, M., Li, F. and Wang, Z. (2011), "Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test", Chin. J. Aeronaut., 24(3), 378-386. https://doi.org/10.1016/S1000-9361(11)60045-9.
  19. Holcomb, D. (1993), "General theory of the Kaiser effect", Int. J. Rock Mech. Min., 30(7), 929-935. https://doi.org/10.1016/0148-9062(93)90047-H.
  20. Holt, J. and Goddard, D. (1980), "Acoustic emission during the elastic-plastic deformation of low alloy reactor pressure vessel steels I: Uniaxial tension", Mat. Sci. Eng., 44(2), 251-265. https://doi.org/10.1016/0025-5416(80)90125-1.
  21. Horvath, K., Drozdenko, D., Mathis, K., Bohlen, J. and Dobron, P. (2016), "Deformation behavior and acoustic emission response on uniaxial compression of extruded rectangular profile of Mg-Zn-Zr alloy", J. Alloys Compd., 680, 623-632. https://doi.org/10.1016/j.jallcom.2016.03.310.
  22. James, D.R. and Carpenter, S.H. (1971), "Relationship between acoustic emission and dislocation kinetics in crystalline solids", J. Appl. Phys., 42(12), 4685-4697. https://doi.org/10.1063/1.1659840.
  23. Kiran, R. and Khandelwal, K. (2014), "Gurson model parameters for ductile fracture simulation in ASTM A992 steels", Fatigue Fract. Eng. M., 37(2), 171-183. https://doi.org/10.1111/ffe.12097.
  24. Kumar, J., Punnose, S., Mukhopadhyay, C.K., Jayakumar, T. and Kumar, V. (2012), "Acoustic emission during tensile deformation of smooth and notched specimens of near alpha titanium alloy", Res. Nondestr. Eval., 23(1), 17-31. https://doi.org/10.1080/09349847.2011.622068
  25. Mcclintock, F.A. (1968), "A criterion for ductile fracture by the growth of holes", J. Appl. Mech., 35(2), 363-371. https://doi.org/10.1115/1.3601204.
  26. Mi, C., Buttry, D.A., Sharma, P. and Kouris, D.A. (2011), "Atomistic insights into dislocation-based mechanisms of void growth and coalescence", J. Mech. Phys. Solids, 59(9), 1858-1871. https://doi.org/10.1016/j.jmps.2011.05.008.
  27. Montgomery, D.C. (2013), Design and Analysis of Experiments, (8th Edition), John Wiley & Sons, New York, NY, USA.
  28. Moorthy, V., Jayakumar, T. and Raj, B. (1995), "Acoustic emission technique for detecting micro- and macroyielding in solution-annealed AISI Type 316 austenitic stainless steel", Int. J. Press. Vessels Pip., 64(2), 161-168. https://doi.org/10.1016/0308-0161(94)00154-B.
  29. Mukhopadhyay, C.K., Jayakumar, T., Raj, B. and Ray, K.K. (2007), "Acoustic emission during tensile deformation of pre-strained nuclear grade AISI Type 304 stainless steel in the unnotched and notched conditions", J. Mater. Sci., 42(14), 5647-5656. https://doi.org/10.1007/s10853-006-1273-3.
  30. Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2012), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, (4th Edition), Wiley, New York, NY, USA.
  31. Nair, A. and Cai, C. (2010), "Acoustic emission monitoring of bridges: Review and case studies", Eng. Struct., 32(6), 1704-1714. https://doi.org/10.1016/j.engstruct.2010.02.020.
  32. Njuhovic, E., Brau, M., Wolff-Fabris, F., Starzynski, K. and Altstadt, V. (2015), "Identification of failure mechanisms of metallised glass fibre reinforced composites under tensile loading using acoustic emission analysis", Compos. Part B-Eng., 81, 1-13. https://doi.org/10.1016/j.compositesb.2015.06.018.
  33. Oral, A., Anlas, G. and Lambros, J. (2012), "Determination of Gurson-Tvergaard-Needleman model parameters for failure of a polymeric material", Int. J. Damage Mech., 21(1), 3-25. https://doi.org/10.1177%2F1056789510385261. https://doi.org/10.1177/1056789510385261
  34. Qiu, F., Dai, G. and Zhang, Y. (2017), "Application of an acoustic emission quantitative method to evaluate oil tank bottom corrosion based on corrosion risk pace", Brit. J. Nondestr. Test, 59(12), 653-658. https://doi.org/10.1784/insi.2017.59.12.653.
  35. Rehman, S.K.U., Ibrahim, Z., Memon, S.A. and Jameel, M. (2016), "Nondestructive test methods for concrete bridges: A review", Constr. Build. Mater., 107, 58-86. https://doi.org/10.1016/j.conbuildmat.2015.12.011.
  36. Rice, J. and Tracey, D. (1969), "On the ductile enlargement of voids in triaxial stress fields", J. Mech. Phys. Solids, 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7.
  37. Springmann, M. and Kuna, M. (2005), "Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques", Comp. Mater. Sci., 33(4), 501-509. https://doi.org/10.1016/j.commatsci.2005.02.002.
  38. Springmann, M. and Kuna, M. (2006), "Determination of ductile damage parameters by local deformation fields: Measurement and simulation", Arch. Appl. Mech., 75(10), 775-797. https://doi.org/10.1007/s00419-006-0033-9.
  39. Tang, C. (1990), "Evolution and propagation of material defects and Kaiser effect function", J. Seismol. Res., 13(2), 203-213.
  40. Tvergaard, V. and Needleman, A. (1984), "Analysis of the cup-cone fracture in a round tensile bar", Acta Metall., 32(1), 157-169. https://doi.org/10.1016/0001-6160(84)90213-X.
  41. Uthaisangsuk, V., Prahl, U., Munstermann, S. and Bleck, W. (2008), "Experimental and numerical failure criterion for formability prediction in sheet metal forming", Comp. Mat. Sci., 43(1), 43-50. https://doi.org/10.1016/j.commatsci.2007.07.036.
  42. Wang, L.Y. and Li, L. (2017), "Parameter identification of GTN model using response surface methodology for high-strength steel BR1500HS", J. Mater. Eng. Perform., 26(8), 3831-3838. https://doi.org/10.1007/s11665-017-2806-4.
  43. Yu, J., Ziehl, P., Zarate, B. and Caicedo, J. (2011), "Prediction of fatigue crack growth in steel bridge components using acoustic emission", J. Constr. Steel Res., 67(8), 1254-1260. https://doi.org/10.1016/j.jcsr.2011.03.005.
  44. Zanganeh, M., Pinna, C. and Yates, J.R. (2013), "Void growth and coalescence modelling in AA2050 using the Rousselier model", Int. J. Damage Mech., 22(2), 219-237. https://doi.org/10.1177/1056789512441808.
  45. Zhang, K., Hua, L., Zheng, C. and Radon, J. (1989), "A computer simulation of ductile fracture initiation in TPB specimen: An application of $V_{gc}$ criterion", Eng. Fract. Mech., 33(5), 671-677. https://doi.org/10.1016/0013-7944(89)90065-9.
  46. Zhang, Z.L. and Skallerud, B. (2010), "Void coalescence with and without prestrain history", Int. J. Damage Mech., 19(2), 153-174. https://doi.org/10.1177%2F1056789508101919. https://doi.org/10.1177/1056789508101919
  47. Zhong, J., Xu, T., Guan, K. and Zou, B. (2016), "Determination of ductile damage parameters using hybrid particle swarm optimization", Exp. Mech., 56(6), 945-955. https://doi.org/10.1007/s11340-016-0141-6.
  48. Zou, S., Yan, F., Yang, G. and Sun, W. (2017), "The identification of the deformation stage of a metal specimen based on acoustic emission data analysis", Sensors, 17(4), 789(1-13). https://doi.org/10.3390/s17040789.