DOI QR코드

DOI QR Code

자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy

  • Ju, Yeon Jin (Department of Mechanical and Design Engineering, Hongik University) ;
  • Kwon, Young-Chul (Department of Mechanical Engineering, Sunmoon University) ;
  • Choi, Heung Soap (Department of Mechanical and Design Engineering, Hongik University)
  • 투고 : 2019.10.02
  • 심사 : 2019.10.29
  • 발행 : 2019.10.31

초록

본 논문에서는 KIA K3 (1.6) 가솔린 자동차의 연비(km/liter)식을 동력학적 힘-모멘트 평형 방정식, 구동력 및 에너지 방정식을 구성하고 분석하여 유도하였다. 이를 통해 차량의 속도(V), 자동차 총 중량(M), 타이어-노면의 롤링저항계수($C_r$), 도로 경사각(${\theta}$)과 항력계수($C_d$), 차량의 횡단면적(A)과 같은 공기역학적 매개변수가 자동차의 연비에 미치는 영향을 분석하였다. 또한 경량금속합금, 섬유강화 플라스틱 복합재료와 같은 대체재료가 기존 자동차의 강재, 주철재를 대체하여 차량의 무게를 줄일 수 있는 가능성 등을 Ashby의 재료지수 방법으로 조사하였다. 본 연구를 통해 다음과 같은 결과를 얻었다. 고속(100km/h)에서 연비에 가장 큰 영향을 미친 매개변수는 그 크기순으로 자동차의 속도 V와 공기역학적 매개변수인 $C_d$, A, ${\rho}$ 및 동력학적 매개변수인 $C_r$, M의 순서로 조사되었다. 반면에 저속(60 km/h)에서는 동력학적 매개변수로는 V, M, $C_r$의 순서로, 공기역학적 매개변수로는 $C_d$, A, ${\rho}$ 순으로 영향을 미침을 확인하였다.

In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

키워드

참고문헌

  1. Cheah, L.W., "Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U.S.," Ph.D Thesis, MIT, 2010.
  2. de Pablo, J.M.S., Lopez, M.M., and Bret, A., How Green are Electric or Hydrogen-Powered Cars?: Assessing GHG Emissions of Traffic in Spain, Springer 2016.
  3. Faruk, O., Tjong, J., and Sain, M., Lightweight and Sustainable Materials for Automotive Applications, CRC Press, 2017.
  4. Mallick, P.K., Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead Pub., 2010.
  5. Elmarakbi, A., Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness, Wiley, 2013.
  6. Kim, K.S., Bae, K.M., Oh, S.Y., Seo, M.K., Kang, C.G., and Park, S.J., "Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles", Elastomers and Composites, Vol. 47, No. 1, 2012, pp. 65-74. https://doi.org/10.7473/EC.2012.47.1.065
  7. Ahmad, F., Choi, H.S., and Park, M.K., "A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties," Macromolecular Materials and Engineering, Vol. 300, Iss. 1, 2014, pp. 10-24. https://doi.org/10.1002/mame.201400089
  8. Shin, D.C., "A Study on the Weight Reduction of Propeller Shaft of Carbon Fiber Composite Material to Improve Fuel Efficiency Ratio of Vehicles", Ph.D. Thesis, Chungwon University, 2018.
  9. Taghavifar, H., adn Mardani, A., Off-road Vehicle Dynamics: Analysis, Modelling and Optimization, Springer, 2017.
  10. Hayes, J.G., and Goodarzi, G.A., Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles, Wiley, 2018.
  11. Lugner, P., Vehicle Dynamics of Modern Passenger Cars, Springer 2019.
  12. Davies, G., Materials for Automobile Bodies, 2nd ed., Butterworth-Heinemann Pub., 2012.
  13. Bosch, Automotive Handbook, Karlsruhe, Germany, 2000.
  14. https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
  15. https://www.kia.com/kr/vehicles/k3.html
  16. https://en.wikipedia.org/wiki/Gasoline
  17. https://www.substech.com/dokuwiki/doku.php?id=grey_cast_iron_astm_40
  18. Bettles, C., and Barnett, M., Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, Wood Head Pub., 2012.
  19. Ashby, M.F., Materials Selection un Mechanical Design, Butterworth-Heinemann Pub., 5th ed., 2017.
  20. https://newsroom.posco.com/en/posco-giga-steel-increases-strength-improves-safety-autos/