DOI QR코드

DOI QR Code

계면 특성을 고려한 무작위 섬유배치를 갖는 단방향 복합재료의 가로방향 기계적 물성 예측 및 보정

Prediction and Calibration of Transverse Mechanical Properties of Unidirectional Composites with Random Fiber Arrangement Considering Interphase Effect

  • Park, Shin-Moo (Department of Mechanical Engineering, Jeonbuk National University) ;
  • Kim, Do-Won (Department of Mechanical Engineering, Jeonbuk National University) ;
  • Jeong, Gyu (Department of Mechanical Engineering, Jeonbuk National University) ;
  • Lim, Jae Hyuk (Department of Mechanical Engineering, Jeonbuk National University) ;
  • Kim, Sun-Won (Satellite Bus Development Division, Korea Aerospace Research Institute)
  • 투고 : 2019.04.16
  • 심사 : 2019.10.14
  • 발행 : 2019.10.31

초록

본 연구에서는 섬유, 기지 및 계면으로 구성된 단방향 복합재료의 대표체적요소를 이용해서 가로방향 기계적 물성을 계면 특성 변화에 따라 예측하고 시험결과에 맞춰 계면의 특성의 보정을 실시하였다. 섬유와 기지로 모델링 된 기존의 대표체적요소는 섬유 길이방향 기계적 물성에 대해 예측 정확도가 높으나 가로방향에 대하여 어느 정도의 편차를 보인다. 따라서, 이런 차이를 보완하기 위해 계면 영역을 도입하였고, 계면의 두께, 탄성 물성과 강도 파라미터에 따라 기계적 물성을 보정하여 복합재료 대표체적요소를 통한 예측의 정확도를 향상시켰다. 그 결과, 복합재료 대표체적요소의 길이방향 물성의 정확도는 유지한 채 가로방향 강성 및 강도의 정확도가 향상됨을 확인하였다.

In this study, the transverse mechanical properties of the unidirectional fiber reinforced composite modeled with fiber, matrix, and interphase is predicted with the representative volume elements and is calibrated by adjusting the properties and thickness of the interphase by referring to the test results. While the conventional representative volume elements modeled with fiber and matrix shows high predictive accuracy for the longitudinal mechanical properties, but it shows some deviations in the transverse mechanical properties. In order to compensate such gaps, the interphase region is employed, and its mechanical properties are adjusted to improve the prediction accuracy according to various elastic modulus, thickness, and strength parameters. As a result, the deviation of the transverse elastic modulus and strength is reduced significantly similar to the test results of the unidirectional composites with the accuracy of the longitudinal mechanical properties preserved.

키워드

참고문헌

  1. Lee, W., "Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models," Composites Research, Vol. 29, No. 5, 2016, pp. 236-242. https://doi.org/10.7234/composres.2016.29.5.236
  2. Im, J.M., Kang, S.G., Shin, K.B., and Lee, S.W., "Study on Evaluation Method of Structural Integrity for Cone-Type Composite Lattice Structures with Hexagonal Cell," Composites Research, Vol. 31, No. 4, 2018, pp. 150-160.
  3. Hinrichsen, E.L., Feder, J., and Jossang, T., "Geometry of Random Sequential Adsorption," Journal of Statistical Physics, Vol. 44, No. 5-6, 1986, pp. 793-827. https://doi.org/10.1007/BF01011908
  4. Vaughan, T.J., and McCarthy, C.T., "A Combined Experimental-numerical Approach for Generating Statistically Equivalent Fibre Distributions for High Strength Laminated Composite Materials," Composites Science and Technology, Vol. 70, No. 2, 2010, pp. 291-297. https://doi.org/10.1016/j.compscitech.2009.10.020
  5. Wang, W., Dai, Y., Zhang, C., Gao, X., and Zhao, M., "Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution," Materials, Vol. 9, No. 8, 2016, pp. 624. https://doi.org/10.3390/ma9080624
  6. Yang, L., Yan, Y., Ran, Z.G., and Liu, Y.J., "A New Method for Generating Random Fibre Distributions for Fibre Reinforced Composites," Composites Science and Technology, Vol. 76, 2013, pp. 14-20. https://doi.org/10.1016/j.compscitech.2012.12.001
  7. Park, S.M., Lim, J.H., Seong, M.R., and Sohn, D.W., "Efficient Generator of Random Fiber Distribution with Diverse Volume Fractions by Random Fiber Removal," Composites Part B: Engineering, Vol. 167, 2019, pp. 302-316. https://doi.org/10.1016/j.compositesb.2018.12.042
  8. Drzal, L., Interfaces and Interphases, ASM International, 2001.
  9. Riano, L., Belec, L., Chailan, J.F., and Joliff, Y., "Effect of Interphase Region on the Elastic Behavior of Unidirectional Glass-fiber/epoxy Composites," Composite Structures, Vol. 198, 2018, pp. 109-116. https://doi.org/10.1016/j.compstruct.2018.05.039
  10. Na, W.J., Lee, G.S., Sung, M.C., Han H.N., and Yu, W.R., "Prediction of the Tensile Strength of Unidirectional Carbon Fiber Composites Considering the Interfacial Shear Strength," Composite Structures, Vol. 168, 2017, pp. 92-103. https://doi.org/10.1016/j.compstruct.2017.02.060
  11. Kaddour, A.S., and Hinton, M.J., "Input Data for Test Cases Used in Benchmarking Triaxial Failure Theories of Composites," Journal of Composite Materials, Vol. 46, No. 19-20, 2012, pp. 2295-2312. https://doi.org/10.1177/0021998312449886
  12. ABAQUS 6.14 DOCUMENTATION, Dassault Systemes Simulia Corp., Providence, RI, USA, 2014.
  13. Jeong, G., Lim, J.H., Choi, C., and Kim, S.W., "A Virtual Experimental Approach to Evaluate Transverse Damage Behavior of a Unidirectional Composite Considering Noncircular Fiber Cross-sections," Composite Structures, Vol. 228, 2019, pp. 111-369.
  14. Wang, X.Q., Zhang, J.F., Wang, Z.Q., Zhou, S., and Sun, X.Y., "Effects of Interphase Properties in Unidirectional Fiber Reinforced Composite Materials," Materials & Design, Vol. 32, No. 6, 2011, pp. 3486-3492. https://doi.org/10.1016/j.matdes.2011.01.029
  15. Liu, Z., Moore, J.A., and Liu, W.K., "An Extended Micromechanics Method for Probing Interphase Properties in Polymer Nanocomposites," Journal of the Mechanics and Physics of Solids, Vol. 95, 2016, pp. 663-680. https://doi.org/10.1016/j.jmps.2016.05.002

피인용 문헌

  1. 단방향 연속 섬유 복합재 횡단면에서 섬유 배열에 따른 응력 분포 변화 vol.33, pp.1, 2019, https://doi.org/10.7234/composres.2020.33.1.030
  2. Effect of Graphitic Nanofibers on Interfacial Adhesion and Fracture Toughness of Carbon Fibers-reinforced Epoxy Composites vol.34, pp.2, 2019, https://doi.org/10.7234/composres.2021.34.2.082