과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Auersch, L. (2008), "The effect of critically moving loads on the vibrations of soft soils and isolated railway tracks", J. Sound Vib., 310(3), 587-607. https://doi.org/10.1016/j.jsv.2007.10.013.
- Bian, X., Cheng, C., Jiang, J., Chen, R. and Chen, Y. (2016), "Numerical analysis of soil vibrations due to trains moving at critical speed", Acta Geotech., 11(2), 281-294. https://doi.org/10.1007/s11440-014-0323-2.
- Bian, X., Jiang, H., Chang, C., Hu, J. and Chen, Y. (2015), "Track and ground vibrations generated by high-speed train running on ballastless railway with excitation of vertical track irregularities", Soil Dyn. Earthq. Eng., 76, 29-43. https://doi.org/10.1016/j.soildyn.2015.02.009.
- Cai, Y., Sun, H., and Xu, C. (2008), "Response of railway track system on poroelastic half-space soil medium subjected to a moving train load", Int. J. Solids Struct., 45(18-19), 5015-5034. https://doi.org/10.1016/j.ijsolstr.2008.05.002.
- Cai, Z. and Raymond, G.P. (1994), "Modelling the dynamic response of railway track to wheel/rail impact loading", Struct. Eng. Mech., 2(1), 95-112. http://dx.doi.org/10.12989/sem.1994.2.1.095.
- Chen, F., Wang, L. and Zhang, W. (2019a), "Reliability assessment on stability of tunneling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties", Tunn. Undergr. Sp. Technol., 88, 276-289. https://doi.org/10.1016/j.tust.2019.03.013.
- Chen, Z., Yang, P., Liu, H., Zhang, W. and Wu, C. (2019b), "Characteristics analysis of granular landslide using shaking table model test", Soil Dyn. Earthq. Eng., 126, 105761. https://doi.org/10.1016/j.soildyn.2019.105761.
- Cheshmehkani, S. and Eskandari-Ghadi, M. (2016), "Dynamic response of axisymmetric transversely isotropic viscoelastic continuously nonhomogeneous half-space", Soil Dyn. Earthq. Eng., 83,110-123. https://doi.org/10.1016/j.soildyn.2016.01.011.
- Chong, S.H., Cho, G.C., Hong, E.S. and Lee, S.W. (2017), "Numerical study of anomaly detection under rail track using a time-variant moving train load", Geomech. Eng., 13(1), 161-171. http://doi.org/10.12989/gae.2017.13.1.161.
- Correia, dos Santos, N., Barbosa, J., Calcada, R. and Delgado, R. (2017), "Track-ground vibrations induced by railway traffic: experimental validation of a 3D numerical model", Soil Dyn. Earthq. Eng., 97, 324-344. https://doi.org/10.1016/j.soildyn.2017.03.004.
- Cui, C.Y., Zhang, S.P., Chapman, D. and Meng, K. (2018), "Dynamic impedance of a floating pile embedded in poro-viscoelastic soils subjected to vertical harmonic loads", Geomech. Eng., 15(2), 793-803. https://doi.org/10.12989/gae.2018.15.2.793.
- El Kacimi, A., Woodward, P. K., Laghrouche, O. and Medero, G. (2013), "Time domain 3D finite element modelling of traininduced vibration at high speed", Comput. Struct., 118, 66-73. https://doi.org/10.1016/j.compstruc.2012.07.011.
- Galvin, P. and Dominguez, J. (2007a), "Analysis of ground motion due to moving surface loads induced by high-speed trains", Eng. Anal. Bound. Elem., 31(11), 931-941. https://doi.org/10.1016/j.enganabound.2007.03.003.
- Galvin, P. and Dominguez, J. (2007b), "High speed train-induced ground motion and interaction with structures", J. Sound Vib., 307(3-5), 755-777. https://doi.org/10.1016/j.jsv.2007.07.017.
- Galvin, P., Romero, A. and Dominguez, J. (2010), "Fully threedimensional analysis of high-speed train-track-soil-structure dynamic interaction", J. Sound Vib., 329(24), 5147-5163. https://doi.org/10.1016/j.jsv.2010.06.016.
- Goh, A.T.C., Zhang, R., Wang, W., Wang, L., Liu, H. and Zhang, W. (2019), "Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils", Acta Geotech., 1-14. https://doi.org/10.1007/s11440-019-00843-5.
- Hall, L. (2003), "Simulations and analyses of train-induced ground vibrations in finite element models", Soil Dyn. Earthq. Eng., 23(5), 403-413. https://doi.org/10.1016/S0267-7261(02)00209-9.
- Hino, J., Yoshimura, T., Konishi, K. and Ananthanarayana, N. (1984), "A finite element method prediction of the vibration of a bridge subjected to a moving vehicle load", J. Sound Vib., 96(1), 45-53. https://doi.org/10.1016/0022-460X(84)90593-5.
- Hung, H.H. and Yang, Y.B. (2001), "Elastic waves in visco-elastic half-space generated by various vehicle loads", Soil Dyn. Earthq. Eng., 21(1), 1-17. https://doi.org/10.1016/S0267-7261(00)00078-6.
- Ju, S.H., Liao, J.R. and Ye, Y.L. (2010), "Behavior of ground vibrations induced by trains moving on embankments with rail roughness", Soil Dyn. Earthq. Eng., 30(11), 1237-1249. https://doi.org/10.1016/j.soildyn.2010.05.006.
- Kaynia, A.M., Madshus, C. and Zackrisson, P. (2000), "Ground vibration from high-speed trains: Prediction and countermeasure", J. Geotech. Geoenviron., 120(6), 531-537. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:6(531).
- Kouroussis, G., Van Parys, L., Conti, C. and Verlinden, O. (2014), "Using three-dimensional finite element analysis in time domain to model railway-induced ground vibrations", Adv. Eng. Softw., 70, 63-76. https://doi.org/10.1016/j.advengsoft.2014.01.005.
- Kouroussis, G., Verlinden, O. and Conti, C. (2009), "Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil", Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, 223(4), 405-413. https://doi.org/10.1243/09544097JRRT253
- Kouroussis, G., Verlinden, O. and Conti, C. (2009), "Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil", Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, 223(4), 405-413. https://doi.org/10.1243%2F09544097JRRT253. https://doi.org/10.1243/09544097JRRT253
- Kouroussis, G., Verlinden, O. and Conti, C. (2011), "Finite-Dynamic Model for Infinite Media: Corrected Solution of Viscous Boundary Efficiency", J. Eng. Mech., 137(7), 509-511. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000250.
- Kouroussis, G., Verlinden, O. and Conti, C. (2011), "Free field vibrations caused by high-speed lines: measurement and time domain simulation", Soil Dyn. Earthq. Eng., 31(4), 692-707. https://doi.org/10.1016/j.soildyn.2010.11.012.
- Krylov, V. (1995), "Generation of ground vibration by superfast trains", Appl. Acoust., 44(2), 149-164. https://doi.org/10.1016/0003-682X(95)91370-I.
- Krylov, V. and Ferguson, C. (1994), "Calculation of low-frequency ground vibrations from railway trains", Appl. Acoust., 42(3), 199-213. https://doi.org/10.1016/0003-682X(94)90109-0.
- Lefeuve-Mesgouez, G. and Mesgouez, A. (2008), "Ground vibration due to a high-speed moving harmonic rectangular load on a poroviscoelastic half-space", Int. J. Solids Struct., 45(11-12), 3353-3374. https://doi.org/10.1016/j.ijsolstr.2008.01.026.
- Lefeuvemesgouez, G., Pepelow, A.T. and Lehoudec, D. (2002), "Surface vibration due to a sequence of high speed moving harmonic rectangular loads", Soil Dyn. Earthq. Eng., 22(6), 459-473. https://doi.org/10.1016/S0267-7261(02)00034-9.
- Li, L., Nimbalkar, S. and Zhong, R. (2018), "Finite element model of ballasted railway with infinite boundaries considering effects of moving train loads and Rayleigh waves", Soil Dyn. Earthq. Eng., 114, 147-153. https://doi.org/10.1016/j.soildyn.2018.06.033.
- Lombaert, G., Degrande, G., Kogut, J. and Francois, S. (2006), "The experimental validation of a numerical model for the prediction of railway induced vibrations", J. Sound Vib., 297(3-5), 512-535. https://doi.org/10.1016/j.jsv.2006.03.048.
- Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95, 859-877. https://doi.org/10.1061/JMCEA3.0001144
- Ma, L., Li, Z., Wang, M., Wei, H. and Fan, P. (2019), "Effects of size and loading rate on the mechanical properties of single coral particles", Power Technol., 342, 961-971. https://doi.org/10.1016/j.powtec.2018.10.037.
- Madshus, C. and Kaynia, A.M. (2000), "High-speed railway lines on soft ground: dynamic behaviour at critical train speed", J. Sound Vib., 231(3), 689-701. https://doi.org/10.1006/jsvi.1999.2647.
- Metrikine, A.V. and Popp, K. (1999), "Vibration of a periodically supported beam on an elastic half-space", Eur. J. Mech A Solid, 18(4), 679-701. https://doi.org/10.1016/S0997-7538(99)00141-2.
- Ren, X.W., Wu, J.F., Tang, Y.Q. and Yang, J.C. (2019), "Propagation and attenuation characteristics of the vibration in soft soil foundations induced by high-speed trains", Soil Dyn. Earthq. Eng., 117, 374-383. https://doi.org/10.1016/j.soildyn.2018.11.004.
- Sheng, X., Jones, C.J.C. and Thompson, D.J. (2003), "A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements", J. Sound Vib., 267(3), 621-635. https://doi.org/10.1016/S0022-460X(03)00728-4.
- Sheng, X., Jones, C.J.C. and Thompson, D.J. (2006), "Prediction of ground vibration from rains using the wavenumber finite and boundary element methods", J. Sound Vib., 293(3-5), 575-586. https://doi.org/10.1016/j.jsv.2005.08.040.
- Shih, J.Y., Thompson, D.J. and Zervos, A. (2016), "The effect of boundary conditions, model size and damping models in the finite element modelling of a moving load on a track/ground system", Soil Dyn. Earthq. Eng., 89, 12-27. https://doi.org/10.1016/j.soildyn.2016.07.004.
- Sun, D., Yao, Y. and Matsuoka, H. (2006), "Modification of critical state models by Mohr-Coulomb criterion", Mech. Res. Commun., 33(2), 217-232. https://doi.org/10.1016/j.mechrescom.2005.05.006.
- Sun, H., Cai, Y. and Xu, C. (2010), "Three-dimensional simulation of track on poroelastic half-space vibrations due to a moving point load", Soil Dyn. Earthq. Eng., 30(10), 958-967. https://doi.org/10.1016/j.soildyn.2010.04.007.
- Takemiya, H. and Bian, X.C. (2005), "Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage", J. Eng. Mech., 131(7), 699-711. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:7(699).
- Vostroukhov, A.V. and Metrikine, A. V. (2003), "Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a high-speed railway track", Int. J. Solids Struct., 40(21), 5723-5752. https://doi.org/10.1016/S0020-7683(03)00311-1.
- Winter, M., Hyodo, M., Wu, Y., Yoshimoto, N., Hasan, M., and Matsui, K. (2017), "Influences of particle characteristic and compaction degree on the shear response of clinker ash", Eng. Geol., 230, 32-45. https://doi.org/10.1016/j.enggeo.2017.09.019.
- Wu, Y., Hyodo, M. and Aramaki, N. (2018), "Undrained cyclic shear characteristics and crushing behaviour of silica sand", Geomech. Eng., 14(1), 1-8. https://doi.org/10.12989/gae.2018.14.1.001.
- Wu, Y., Li, N., Hyodo, M., Gu, M., Cui, J. and Spencer, B.F. (2019), "Modeling the mechanical response of gas hydrate reservoirs in triaxial stress space", Int. J. Hydrogen Energy, 44, 26698-26710. https://doi.org/10.1016/j.ijhydene.2019.08.119.
- Wu, Y., Yamamoto, H. and Yao, Y. (2013), "Numerical study on bearing behavior of pile considering sand particle crushing", Geomech. Eng., 5(3), 241-261. https://dx.doi.org/10.12989/gae.2013.5.3.241.
- Yao, H.L., Hu, Z., Lu, Z., Zhan, Y.X. and Liu, J. (2016), "Prediction of ground vibration from high speed trains using a vehicle-track-ground coupling model", Int. J. Struct. Stab. Dy., 16(8), 1550051. https://doi.org/10.1142/S0219455415500510.
- Yaseri, A., Bazyar, M.H. and Hataf, N. (2014), "3D coupled scaled boundary finite-element/finite-element analysis of ground vibrations induced by underground train movement", Comput. Geotech., 60, 1-8. https://doi.org/10.1016/j.compgeo.2014.03.013.
- Yoshimoto, N., Wu, Y., Hyodo, M. and Nakata, Y. (2016), "Effect of relative density on the shear behaviour of granulated coal ash", Geomech. Eng., 10(2), 207-224. https://doi.org/10.12989/gae.2016.10.2.207.
- Zhang, R., Zhang, W., Goh, A.T.C., Hou, Z.J. and Wang, W. (2018), "A simple model for ground surface settlement induced by braced excavation subjected to a significant groundwater drawdown", Geomech. Eng., 16(6), 635-642. https://doi.org/10.12989/gae.2018.16.6.635.