Acknowledgement
Grant : Liquefaction Assessment Protocols to Protect Critical Infrastructures against Earthquake Damage: LIQ2PROEARTH
Supported by : Portuguese Foundation for Science and Technology (FCT)
References
- Alarcon-Guzman, A., Leonards, G.A. and Chameau, J.L. (1988), "Undrained monotonic and cyclic strength of sands", J. Geotech. Eng., 114(10), 1089-1109. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1089).
- ASTM International (2007), D422 - Standard Test Method for Particle-Size Analysis of Soils.
- ASTM International (2014), D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.
- ASTM International (2016), D4254 - Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.
- Been, K. and Jefferies, M. (1985), "A state parameter for sands", Geotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99
- Bertalot, D. and Brennan, A.J. (2015), "Influence of initial stress distribution on liquefaction-induced settlement of shallow foundations", Geotechnique, 65(5), 418-428. http://dx.doi.org/10.1680/geot.SIP.15.P.002.
- Caicedo, B., Tristancho, J. and Thorel, L. (2015), "Mathematical and physical modelling of rainfall in centrifuge", Int. J. Phys. Modell. Geotech., 15(3), 150-164. http://dx.doi.org/10.1680/ijpmg.14.00023.
- Carrera, A., Coop, M. and Lancellota, R. (2011), "Influence of grading on the mechanical behaviour of Stava tailings", Geotechnique, 61(11), 935-946. http://dx.doi.org/10.1680/geot.9.P.009.
- Cho, G., Dodds, J. and Santamarina, J.C., (2006), "Particle shape effects on packing density, stiffness, and strength: natural and crushed sand", J. Geotech. Geoenviron. Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
- Coelho, P.A.L.F, Haigh, S.K. and Madabhushi, S.P.G. (2006), "Effects of successive earthquakes on saturated deposits of sand",Proceedings of the Sixth International Conference on Physical Modelling in Geotechnics-6th ICPMG '06, Hong Kong, August.
- Correa, W. (2015), "Shaking box design, construction and test on small shaking table and centrifuge modeling", Ph.D. Dissertation, Universidad de los Andes, Bogota, Colombia.
- Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M. and Wilson, D. (2006), "Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil", J. Geotech. Geoenviron. Eng., 136(1), 151-164. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000179.
- Du, S. and Chian, S.C. (2018), "Excess pore pressure generation in sand under non-uniform cyclic strain triaxial testing", Soil Dyn. Earthq. Eng., 109, 119-131. https://doi.org/10.1016/j.soildyn.2018.03.016.
- El-sekelly, W., Dobry, R., Abdoun, T. and Steidl, J.H. (2015), "Centrifuge modeling of the effect of preshaking on the liquefaction resistance of silty sand deposits", J. Geotech. Geoenviron. Eng., 142(6), 1211-1226. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001430.
- Georgiannou, V.N., Tsomokos, A. and Stavrou, K. (2008), "Monotonic and cyclic behaviour of sand under torsional loading", Geotechnique, 58(2), 113-124. https://doi.org/10.1680/geot.2008.58.2.113.
- Green, R.A., Cubrinovski, M., Bradley, B., Henderson, D., Kailey, P., Robinson, K., Taylor, M., Winkley, A., Wotherspoon, L., Oresne, R., Pender, M., Hogan, L., Allen, J., Bradshaw, A., Bray, J., DePascale, G., O'Rourke, T., Rix, G., Wells, D. and Wood, C. (2012), "Geotechnical aspects of the Mw 6.2 2011 Christchurch, New Zealand, Earthquake", Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, California, U.S.A.
- Hushmand, B., Scott, R.F. and Crouse, C.B. (1988), "Centrifuge liquefaction tests in a laminar box", Geotechnique, 38(2), 253-262. https://doi.org/10.1680/geot.1988.38.2.253
- Iai, S. (1988), "Similitude for shaking table tests on soil-structurefluid model in 1g gravitational field", Soils Found., 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105.
- Idriss, I.M. and Boulanger, R.W. (2012), Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute, Oakland, California, U.S.A.
- INVIAS (2013), "INV E-136-13 Estimation of the unit weight maximum and minimum for the computation of relative density".
- Ishibashi, I. (1985), "Effect of grain characteristics on liquefaction potential-In search of standard sand for cyclic strength", Geotech. Test. J., 8(3), 137-139. https://doi.org/10.1520/GTJ10525J.
- Ishihara, K (1996), Geotechnical Earthquake Engineering, Pretince Hall, New York, U.S.A.
- Ishihara, K. (1996), Soil Behaviour in Earthquake Geotechnics, Oxford, New York, U.S.A.
- Jefferies, M. and Been, K. (2015), Soil Liquefaction: A Critical State Approach, CRC Press, Abingdon, U.K.
- Jimenez, O. and Lizcano, A (2015), "Liquefaction flow behavior of Guamo sand", Proceedings of the 15th Pan American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina, November.
- Kramer, S. and Elgamal, A.M. (2001), Modeling Soil Liquefaction Hazards for Performance-based Earthquake Engineering, Pacific Earthquake Engineering Research Center, Berkley, California, U.S.A.
- Lin, M. and Wang, K. (2006), "Seismic slope behavior in a largescale shaking table model test", Eng. Geol., 86(2-3), 118-133. https://doi.org/10.1016/j.enggeo.2006.02.011.
- Madabhushi, G (2014), Centrifuge Modelling for Civil Engineers, CRC Press, New York, U.S.A.
- Madabhushi, S.P.G. and Schofield, A.N. (1993), "Centrifuge modelling of tower structures on saturated sands subjected to earthquake perturbations", Geotechnique, 43(4), 555-565. https://doi.org/10.1680/geot.1993.43.4.555.
- Meymand, P. (1998), "Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay", Ph.D. Dissertation, University of California, Berkeley, California, U.S.A.
- Moczo, P., Kristek, J. and Galis, M. (2014), "The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures", Cambridge University Press, Cambridge, U.K.
- Monkul, M.M., Gultekin, C., Gulver, M., Akin, O. and Eseller-Bayat, E. (2015), "Cyclic DSS tests for the evaluation of stress densification effects in liquefaction assessment", Soil Dyn. Earthq. Eng., 75, 27-36. https://doi.org/10.1016/j.soildyn.2015.03.016.
- Patino, J. (2015), "Hipoplastic parameters of Guamo Sand", M.Sc. Dissertation, Universidad de Los Andes, Bogota, Colombia.
- Ramos, C., Viana da Fonseca, A. and Vaunat, J. (2015), "Modeling flow instability of an Algerian sand with the dilatancy rule in CASM", Geomech. Eng., 9(6), 729-742. http://dx.doi.org/10.12989/gae.2015.9.6.729.
- Robertson, P.K. (2010), "Evaluation of flow liquefaction and liquefied strength using the cone penetration test", J. Geotech. Geoenviron. Eng., 136(6), 842-853. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000286.
- Robertson, P.K. and Wride, C.E. (1998), "Evaluating lyclic liquefaction potential using the cone penetration test", Can. Geotech. J., 35(3), 442-459. https://doi.org/10.1139/t98-017.
- Sarmiento, C.A. and Vidal, H.A (2007), "Geomechanical characterization of soil mixtures for physical models by the method of equivalent materials", B.Sc. dissertation, Universidad de la Salle, Bogota, Colombia (in Spanish).
- Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found., 97(9), 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
- Seed, H.B., Idriss, I.M. and Arango, I. (1983), "Evauation of piquefaction potential using field performance data", J. Geotech. Eng., 109(3), 458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
- Serrato, D.P. (2012), "Design of a flexible soil-container used on small shaking tables and centrifuge models", B.Sc. Dissertation, Universidad de Los Andes, Bogota, Colombia.
- Sharp, M., Dobry, R. and Phillips, R. (2010), "CPT-Based evaluation of liquefaction and lateral spreading in centrifuge", J. Geotech. Geoenviron. Eng., 136(10), 1334-1346. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000338.
- Taylor. R. (1995), Geotechnical Centrifuge Technology, Blakie Academical & Professional, London, U.K.
- Tique, D. (2016), "Experimental study of the diffuse instability for the Guamo Sand", M.Sc. Dissertation, Pontificia Universidad Javeriana, Bogota, Colombia (in Spanish).
- Tsaparli, V., Kontoe, S. and Taborda, D. (2017), "An energy-based interpretation of sand liquefaction due to vertical ground motion", Comput. Geotech., 90, 1-13. https://doi.org/10.1016/j.compgeo.2017.05.006.
- Turan, A., Hinchberger, S.D. and El Naggar, H. (2009), "Design and commissioning of a laminar soil container for use on small shaking tables", Soil Dyn. Earthq. Eng., 29(2), 404-414. https://doi.org/10.1016/j.soildyn.2008.04.003.
- Ueng, T.S., Wu, C.W., Cheng, H.W. and Chen, C.H. (2010), "Settlements of saturated clean sand deposits in shaking table tests", Soil Dyn. Earthq. Eng., 30(2), 50-60. https://doi.org/10.1016/j.soildyn.2009.09.006.
- Viana da Fonseca, A., Soares, M. and Fourie, A.B. (2015), "Cyclic DSS tests for the evaluation of stress densification effects in liquefaction assessment", Soil Dyn. Earthq. Eng., 75, 98-111. https://doi.org/10.1016/j.soildyn.2015.03.016.
- Wang, B., Zen, K., Chen, G.Q. and Kasama, K. (2011), "Effects of excess pore pressure dissipation on liquefaction-induced ground deformation in 1-g shaking table test", Geomech. Eng., 4(2), 91-103. https://doi.org/10.12989/gae.2012.4.2.091
- Zhou, J. Jiang, J. and Chen, X. (2015), "Micro- and macroobservations of liquefaction of saturated sand around buried structures in centrifuge shaking table tests", Soil Dyn. Earthq. Eng., 72, 1-11. https://doi.org/10.1016/j.soildyn.2014.12.017.