DOI QR코드

DOI QR Code

Physical modelling of soil liquefaction in a novel micro shaking table

  • Received : 2018.07.16
  • Accepted : 2019.10.15
  • Published : 2019.10.30

Abstract

The physical models are useful to understand the soil behaviour. Hence, these tools allow validating analytical theories and numerical data. This paper addresses the design, construction and implementation of a physical model able to simulate the soil liquefaction under different cyclic actions. The model was instrumented with a piezoelectric actuator and a set of transducers to measure the porewater pressures, displacements and accelerations of the system. The soil liquefaction was assessed in three different grain size particles of a natural sand by applying a sinusoidal signal, which incorporated three amplitudes and the fundamental frequencies of three different earthquakes occurred in Colombia. In addition, such frequencies were scaled in a micro shaking table device for 1, 50 and 80 g. Tests allowed identifying the liquefaction susceptibility at various frequency and displacement amplitude combinations. Experimental evidence validated that the liquefaction susceptibility is higher in the fine-grained sands than coarse-grained sands, and showed that the acceleration of the actuator controls the phenomena trigging in the model instead of the displacement amplitude.

Keywords

Acknowledgement

Grant : Liquefaction Assessment Protocols to Protect Critical Infrastructures against Earthquake Damage: LIQ2PROEARTH

Supported by : Portuguese Foundation for Science and Technology (FCT)

References

  1. Alarcon-Guzman, A., Leonards, G.A. and Chameau, J.L. (1988), "Undrained monotonic and cyclic strength of sands", J. Geotech. Eng., 114(10), 1089-1109. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1089).
  2. ASTM International (2007), D422 - Standard Test Method for Particle-Size Analysis of Soils.
  3. ASTM International (2014), D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.
  4. ASTM International (2016), D4254 - Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.
  5. Been, K. and Jefferies, M. (1985), "A state parameter for sands", Geotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99
  6. Bertalot, D. and Brennan, A.J. (2015), "Influence of initial stress distribution on liquefaction-induced settlement of shallow foundations", Geotechnique, 65(5), 418-428. http://dx.doi.org/10.1680/geot.SIP.15.P.002.
  7. Caicedo, B., Tristancho, J. and Thorel, L. (2015), "Mathematical and physical modelling of rainfall in centrifuge", Int. J. Phys. Modell. Geotech., 15(3), 150-164. http://dx.doi.org/10.1680/ijpmg.14.00023.
  8. Carrera, A., Coop, M. and Lancellota, R. (2011), "Influence of grading on the mechanical behaviour of Stava tailings", Geotechnique, 61(11), 935-946. http://dx.doi.org/10.1680/geot.9.P.009.
  9. Cho, G., Dodds, J. and Santamarina, J.C., (2006), "Particle shape effects on packing density, stiffness, and strength: natural and crushed sand", J. Geotech. Geoenviron. Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
  10. Coelho, P.A.L.F, Haigh, S.K. and Madabhushi, S.P.G. (2006), "Effects of successive earthquakes on saturated deposits of sand",Proceedings of the Sixth International Conference on Physical Modelling in Geotechnics-6th ICPMG '06, Hong Kong, August.
  11. Correa, W. (2015), "Shaking box design, construction and test on small shaking table and centrifuge modeling", Ph.D. Dissertation, Universidad de los Andes, Bogota, Colombia.
  12. Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M. and Wilson, D. (2006), "Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil", J. Geotech. Geoenviron. Eng., 136(1), 151-164. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000179.
  13. Du, S. and Chian, S.C. (2018), "Excess pore pressure generation in sand under non-uniform cyclic strain triaxial testing", Soil Dyn. Earthq. Eng., 109, 119-131. https://doi.org/10.1016/j.soildyn.2018.03.016.
  14. El-sekelly, W., Dobry, R., Abdoun, T. and Steidl, J.H. (2015), "Centrifuge modeling of the effect of preshaking on the liquefaction resistance of silty sand deposits", J. Geotech. Geoenviron. Eng., 142(6), 1211-1226. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001430.
  15. Georgiannou, V.N., Tsomokos, A. and Stavrou, K. (2008), "Monotonic and cyclic behaviour of sand under torsional loading", Geotechnique, 58(2), 113-124. https://doi.org/10.1680/geot.2008.58.2.113.
  16. Green, R.A., Cubrinovski, M., Bradley, B., Henderson, D., Kailey, P., Robinson, K., Taylor, M., Winkley, A., Wotherspoon, L., Oresne, R., Pender, M., Hogan, L., Allen, J., Bradshaw, A., Bray, J., DePascale, G., O'Rourke, T., Rix, G., Wells, D. and Wood, C. (2012), "Geotechnical aspects of the Mw 6.2 2011 Christchurch, New Zealand, Earthquake", Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, California, U.S.A.
  17. Hushmand, B., Scott, R.F. and Crouse, C.B. (1988), "Centrifuge liquefaction tests in a laminar box", Geotechnique, 38(2), 253-262. https://doi.org/10.1680/geot.1988.38.2.253
  18. Iai, S. (1988), "Similitude for shaking table tests on soil-structurefluid model in 1g gravitational field", Soils Found., 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105.
  19. Idriss, I.M. and Boulanger, R.W. (2012), Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute, Oakland, California, U.S.A.
  20. INVIAS (2013), "INV E-136-13 Estimation of the unit weight maximum and minimum for the computation of relative density".
  21. Ishibashi, I. (1985), "Effect of grain characteristics on liquefaction potential-In search of standard sand for cyclic strength", Geotech. Test. J., 8(3), 137-139. https://doi.org/10.1520/GTJ10525J.
  22. Ishihara, K (1996), Geotechnical Earthquake Engineering, Pretince Hall, New York, U.S.A.
  23. Ishihara, K. (1996), Soil Behaviour in Earthquake Geotechnics, Oxford, New York, U.S.A.
  24. Jefferies, M. and Been, K. (2015), Soil Liquefaction: A Critical State Approach, CRC Press, Abingdon, U.K.
  25. Jimenez, O. and Lizcano, A (2015), "Liquefaction flow behavior of Guamo sand", Proceedings of the 15th Pan American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina, November.
  26. Kramer, S. and Elgamal, A.M. (2001), Modeling Soil Liquefaction Hazards for Performance-based Earthquake Engineering, Pacific Earthquake Engineering Research Center, Berkley, California, U.S.A.
  27. Lin, M. and Wang, K. (2006), "Seismic slope behavior in a largescale shaking table model test", Eng. Geol., 86(2-3), 118-133. https://doi.org/10.1016/j.enggeo.2006.02.011.
  28. Madabhushi, G (2014), Centrifuge Modelling for Civil Engineers, CRC Press, New York, U.S.A.
  29. Madabhushi, S.P.G. and Schofield, A.N. (1993), "Centrifuge modelling of tower structures on saturated sands subjected to earthquake perturbations", Geotechnique, 43(4), 555-565. https://doi.org/10.1680/geot.1993.43.4.555.
  30. Meymand, P. (1998), "Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay", Ph.D. Dissertation, University of California, Berkeley, California, U.S.A.
  31. Moczo, P., Kristek, J. and Galis, M. (2014), "The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures", Cambridge University Press, Cambridge, U.K.
  32. Monkul, M.M., Gultekin, C., Gulver, M., Akin, O. and Eseller-Bayat, E. (2015), "Cyclic DSS tests for the evaluation of stress densification effects in liquefaction assessment", Soil Dyn. Earthq. Eng., 75, 27-36. https://doi.org/10.1016/j.soildyn.2015.03.016.
  33. Patino, J. (2015), "Hipoplastic parameters of Guamo Sand", M.Sc. Dissertation, Universidad de Los Andes, Bogota, Colombia.
  34. Ramos, C., Viana da Fonseca, A. and Vaunat, J. (2015), "Modeling flow instability of an Algerian sand with the dilatancy rule in CASM", Geomech. Eng., 9(6), 729-742. http://dx.doi.org/10.12989/gae.2015.9.6.729.
  35. Robertson, P.K. (2010), "Evaluation of flow liquefaction and liquefied strength using the cone penetration test", J. Geotech. Geoenviron. Eng., 136(6), 842-853. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000286.
  36. Robertson, P.K. and Wride, C.E. (1998), "Evaluating lyclic liquefaction potential using the cone penetration test", Can. Geotech. J., 35(3), 442-459. https://doi.org/10.1139/t98-017.
  37. Sarmiento, C.A. and Vidal, H.A (2007), "Geomechanical characterization of soil mixtures for physical models by the method of equivalent materials", B.Sc. dissertation, Universidad de la Salle, Bogota, Colombia (in Spanish).
  38. Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. Found., 97(9), 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
  39. Seed, H.B., Idriss, I.M. and Arango, I. (1983), "Evauation of piquefaction potential using field performance data", J. Geotech. Eng., 109(3), 458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
  40. Serrato, D.P. (2012), "Design of a flexible soil-container used on small shaking tables and centrifuge models", B.Sc. Dissertation, Universidad de Los Andes, Bogota, Colombia.
  41. Sharp, M., Dobry, R. and Phillips, R. (2010), "CPT-Based evaluation of liquefaction and lateral spreading in centrifuge", J. Geotech. Geoenviron. Eng., 136(10), 1334-1346. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000338.
  42. Taylor. R. (1995), Geotechnical Centrifuge Technology, Blakie Academical & Professional, London, U.K.
  43. Tique, D. (2016), "Experimental study of the diffuse instability for the Guamo Sand", M.Sc. Dissertation, Pontificia Universidad Javeriana, Bogota, Colombia (in Spanish).
  44. Tsaparli, V., Kontoe, S. and Taborda, D. (2017), "An energy-based interpretation of sand liquefaction due to vertical ground motion", Comput. Geotech., 90, 1-13. https://doi.org/10.1016/j.compgeo.2017.05.006.
  45. Turan, A., Hinchberger, S.D. and El Naggar, H. (2009), "Design and commissioning of a laminar soil container for use on small shaking tables", Soil Dyn. Earthq. Eng., 29(2), 404-414. https://doi.org/10.1016/j.soildyn.2008.04.003.
  46. Ueng, T.S., Wu, C.W., Cheng, H.W. and Chen, C.H. (2010), "Settlements of saturated clean sand deposits in shaking table tests", Soil Dyn. Earthq. Eng., 30(2), 50-60. https://doi.org/10.1016/j.soildyn.2009.09.006.
  47. Viana da Fonseca, A., Soares, M. and Fourie, A.B. (2015), "Cyclic DSS tests for the evaluation of stress densification effects in liquefaction assessment", Soil Dyn. Earthq. Eng., 75, 98-111. https://doi.org/10.1016/j.soildyn.2015.03.016.
  48. Wang, B., Zen, K., Chen, G.Q. and Kasama, K. (2011), "Effects of excess pore pressure dissipation on liquefaction-induced ground deformation in 1-g shaking table test", Geomech. Eng., 4(2), 91-103. https://doi.org/10.12989/gae.2012.4.2.091
  49. Zhou, J. Jiang, J. and Chen, X. (2015), "Micro- and macroobservations of liquefaction of saturated sand around buried structures in centrifuge shaking table tests", Soil Dyn. Earthq. Eng., 72, 1-11. https://doi.org/10.1016/j.soildyn.2014.12.017.