DOI QR코드

DOI QR Code

Comparative study on long-term stability in mandibular sagittal split ramus osteotomy: hydroxyapatite/poly-ʟ-lactide mesh versus titanium miniplate

  • Park, Young-Wook (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Kang, Hyun-Sik (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Jang-Ha (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University)
  • Received : 2018.11.23
  • Accepted : 2019.02.04
  • Published : 2019.12.31

Abstract

Background: Resorbable devices have recently been adopted in the field of orthognathic surgery with controversies about their postoperative skeletal stability. Hence, we determined the long-term skeletal stability of unsintered hydroxyapatite/poly-ʟ-lactic acid (HA/PLLA) mesh for osteofixation of mandibular sagittal split ramus osteotomy (SSRO), and compared it with that of titanium miniplate. Methods: Patients were divided into resorbable mesh and titanium miniplate fixation groups. A comparative study of the change in the mandibular position was performed with preoperative, 1-day, 6-month, and 2-year postoperative lateral cephalograms. Results: At postoperative 6 months-compared with postoperative 1 day, point B (supra-mentale) was significantly displaced anteriorly in the titanium-fixation group. Moreover, at postoperative 2 years-compared with postoperative 6 months, point B was significantly displaced inferiorly in the titanium-fixation. However, the HA/PLLA mesh-fixation group did not show any significant change with respect to point B postoperatively. Conclusions: The HA/PLLA mesh-fixation group demonstrated superior long-term skeletal stability with respect to the position of mandible, when compared with the titanium-fixation group.

Keywords

References

  1. Ko EW, Huang CS, Lo LJ, Chen YR (2013) Alteration of masticatory electromyographic activity and stability of orthognathic surgery in patients with skeletal class III malocclusion. J Oral Maxillofac Surg 71(7):1249-1260 https://doi.org/10.1016/j.joms.2013.01.002
  2. Haug RH (1996) Retention of asymptomatic bone plates used for orthognathic surgery and facial fractures. J Oral and Maxillofac Surg 54(5):611-617 https://doi.org/10.1016/S0278-2391(96)90644-8
  3. Jorgenson DS, Mayer MF, Ellenbogen RG, Centeno JA, Johnson FB, Mullick FG, Manson PN (1997) Detection of titanium in human tissues after craniofacial surgery. Plast Reconstr Surg 99:976-979 https://doi.org/10.1097/00006534-199704000-00006
  4. Haers PE, Sailer HF (1998) Biodegradable self-reinforced poly-L/DL-lactide plates and screws in bimaxillary orthognathic surgery: short term skeletal stability and material related failures. J Craniomaxillofac Surg 26(6):363-372 https://doi.org/10.1016/S1010-5182(98)80069-3
  5. Cheung LK, Chow LK, Chiu WK (2004) A randomized controlled trial of resorbable versus titanium fixation for orthognathic surgery. Oral Surgery, Oral Med, Oral Pathol, Oral Radiol, Endodontol 98(4):386-397 https://doi.org/10.1016/j.tripleo.2004.02.069
  6. Landes CA, Ballon A (2006) Skeletal stability in bimaxillary orthognathic surgery: P (L/DL) LA-resorbable versus titanium osteofixation. Plast Reconstr Surg 118(3):703-721 https://doi.org/10.1097/01.prs.0000232985.05153.bf
  7. Landes CA, Ballon A, Sader R (2007) Segment stability in bimaxillary orthognathic surgery after resorbable poly (L-lactide-co-glycolide) versus titanium osteosyntheses. J Craniofac Surg 18(5):1216-1229 https://doi.org/10.1097/scs.0b013e31814b29df
  8. Stockmann P, Bohm H, Driemel O, Muhling J, Pistner H (2010) Resorbable versus titanium osteosynthesis devices in bilateral sagittal split ramus osteotomy of the mandible-he results of a two centre randomised clinical study with an eight-year follow-up. J Craniomaxillofac Surg 38(7):522-528 https://doi.org/10.1016/j.jcms.2010.01.002
  9. Ueki K, Okabe K, Miyazaki M, Mukozawa A, Moroi A, Marukawa K, Nakagawa K, Yamamoto E (2011) Skeletal stability after mandibular setback surgery: comparisons among unsintered hydroxyapatite/poly-L-lactic acid plate, poly-Llactic acid plate, and titanium plate. J Oral and Maxillofac Surg 69(5):1464-1468 https://doi.org/10.1016/j.joms.2010.06.187
  10. Paeng JY, Hong J, Kim CS, Kim MJ (2012) Comparative study of skeletal stability between bicortical resorbable and titanium screw fixation after sagittal split ramus osteotomy for mandibular prognathism. J Craniomaxillofac Surg 40(8):660-664 https://doi.org/10.1016/j.jcms.2011.11.001
  11. Matthews N, Khambay B, Ayoub A, Koppel D, Wood G (2003) Preliminary assessment of skeletal stability after sagittal split mandibular advancement using a bioresorbable fixation system. Br J Oral and Maxillofac Surg 41(3):179-184 https://doi.org/10.1016/S0266-4356(03)00048-2
  12. Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L lactide (PLLA): part II. Practical properties of miniscrews and miniplates. Biomaterials 22:3179-3211 https://doi.org/10.1016/S0142-9612(01)00070-9
  13. Mazzonetto R, Paza A, Spagnoli D (2004) A retrospective evaluation of rigid fixation in orthognathic surgery using a biodegradable self-reinforced (70L: 30DL) polyactide. Int J Oral and Maxillofac Surg 33(7):664-669 https://doi.org/10.1016/j.ijom.2004.02.001
  14. Ueki K, Nakagawa K, Marukawa K, Takazakura D, Shimada M, Takatsuka S, Yamamoto E (2005) Changes in condylar long axis and skeletal stability after bilateral sagittal split ramus osteotomy with poly-L-lactic acid or titanium plate fixation. Int J Oral and Maxillofac Surg 34(6):627-634 https://doi.org/10.1016/j.ijom.2005.02.013
  15. Moure C, Qassemyar Q, Dunaud O, Neiva C, Testelin S, Devauchelle B (2012) Skeletal stability and morbidity with self-reinforced P (L/DL) LA resorbable osteosynthesis in bimaxillary orthognathic surgery. J Craniomaxillofac Surg 40(1):55-60 https://doi.org/10.1016/j.jcms.2011.01.011
  16. Kim MK, Park YW (2018) Experimental study on segmental stability of mandibular osteotomy: Bioresorbable mesh versus titanium osteosynthesis. Oral Biol Res 42(3):121-129 https://doi.org/10.21851/obr.42.03.201809.121
  17. Shikinami Y, Okuno M (1999) Biodegradable devices made of forged composites of hydroxyapatite (HA) particles and poly-L lactide (PLLA): part I. Basic characteristics. Biomaterials 20:859-877 https://doi.org/10.1016/S0142-9612(98)00241-5
  18. Furukawa T, Matsusue Y, Yasunaga T, Shikinami Y, Okuno M, Nakamura T (2000) Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (L-lactide) composite rods for internal fixation of bone fractures. Biomaterials 21(9):889-898 https://doi.org/10.1016/S0142-9612(99)00232-X
  19. Landes CA, Ballon A, Tran A, Ghanaati S, Sader R (2014) Segment stability in orthognathic surgery: hydroxyapatite/poly L-lactide osteoconductive composite versus titanium miniplate osteosyntheses. J Craniofac Surg 41:930-942
  20. Shikinami Y, Matsusue Y, Nakamura T (2005) The complete process of biodegradation and bone replacement using devices made of forged composites of raw hydroxyapatite particles/ poly-L lactide (F-u-HA; PLLA). Biomaterials 26:5542-5551 https://doi.org/10.1016/j.biomaterials.2005.02.016
  21. Mackool R, Yim J, McCarthy JG (2006) Delayed degradation in a resorbable plating system. J Craniofac Surg 17(1):194-197 https://doi.org/10.1097/01.scs.0000194167.50546.7e
  22. Park JM, Park YW (2010) Postoperative stability of fixation with absorbables in simultaneous maxillomandibular orthognathic surgery. Maxillofac Plast Reconstr Surg 32(2):126-131

Cited by

  1. Progress in targeted therapeutic drugs for oral squamous cell carcinoma vol.31, 2019, https://doi.org/10.1016/j.suronc.2019.09.001
  2. Clinical Evaluation of Unsintered Hydroxyapatite Particles/Poly L-Lactide Composite Device in Craniofacial Surgery vol.32, pp.6, 2019, https://doi.org/10.1097/scs.0000000000007491
  3. A Narrative Review of u-HA/PLLA, a Bioactive Resorbable Reconstruction Material: Applications in Oral and Maxillofacial Surgery vol.15, pp.1, 2022, https://doi.org/10.3390/ma15010150