DOI QR코드

DOI QR Code

Assessment of the Effects of Interactions between Climatic Conditions and Genetic Characteristics on the Agronomic Traits of Soybeans Grown in Six Different Experimental Fields

  • Park, Myoung Ryoul (Central Area Crop Breeding Research Div., National Institute of Crop Science) ;
  • Cai, Chunmei (College of Life Sciences, Qingdao Agricultural University) ;
  • Seo, Min-Jung (Central Area Crop Breeding Research Div., National Institute of Crop Science) ;
  • Yun, Hong-Tae (Central Area Crop Breeding Research Div., National Institute of Crop Science) ;
  • Park, Soo-Kwon (Research Policy Div., Research Policy Bureau, Rural Development Administration) ;
  • Choi, Man-Soo (Crop Foundation Div., National Institute of Crop Science) ;
  • Park, Chang-Hwan (Crop Post-harvest Technology Research Div., National Institute of Crop Science) ;
  • Moon, Jung Kyung (National Institute of Agricultural Science)
  • Received : 2019.07.16
  • Accepted : 2019.09.10
  • Published : 2019.09.30

Abstract

Soybean [Glycine max (L.) Merr.] is a species of legume native to East Asia. The interactions between climatic conditions and genetic characteristics are known to affect the agricultural performance of soybean. Therefore, the present investigation was conducted to identify the main elements affecting the agricultural performances of 11 soybean varieties/lines from China [Harbin ($45^{\circ}12^{\prime}N$), Yanji ($42^{\circ}53^{\prime}N$), Dalian ($39^{\circ}30^{\prime}N$), Qingdao ($36^{\circ}26^{\prime}N$)] and the Republic of Korea [Suwon ($37^{\circ}16^{\prime}N$), and Jeonju ($35^{\circ}49^{\prime}N$)]. The days to flowering (DTF) of soybeans with the e1-nf and e1-as alleles and the E1e2e3e4 genotype, except in 'Keumgangkong', 'Tawonkong', and 'Duyoukong', were relatively short compared to those of soybeans with other alleles. Although DTF of the soybeans was highly correlated with all climatic conditions [negative: precipitation, average temperature (AVT), accumulated temperature; positive: day-length (DL)], days to maturity and 100-seed weight of the soybeans showed no significant correlation with any climatic conditions. The soybeans with a dominant Dt1 allele, except 'Tawonkong', had the longest stem length (STL). Moreover, STL of the soybeans grown in the test fields showed a positive correlation with only DL; however, the results of our chamber test that was conducted to complement the field tests showed that STL of soybean was positively affected by AVT and DL. Although soybean yield (YLD) showed positive correlations with latitude and DL (except L62-667, OT89-5, and OT89-6), the response of YLD to the climatic conditions was cultivar-specific. Our results show that DTF and STL of soybeans grown in six different latitudes are highly affected by DL, and AVT and genetic characteristic also affect DTF and STL.

Keywords

References

  1. Hofstrand, D. 2011. Climate Change Beginning to Impact Global Crop Production. AgMRC Renewable Energy & Climate Change Newsletter. Available online: https://www.agmrc.org/renewable-energy/climate-change-and-agriculture/climate-change-beginning-to-impact-global-crop-production (accessed on September 2011).
  2. Avila, A. M. H., J. R. B. Farias, H. S. Pinto, and F. G. Pilau. 2013. Climatic restrictions for maximizing soybean yields. in: Board, J. E. (Ed.), A comprehensive survey of international soybean research-genetics, physiology, agronomy and nitrogen relationships. New York, NY, pp. 367-375.
  3. Berlato, M. A. 1981. Bioclimatologia da soja. in: Miyasaka, S. and J. C. Medina. (Eds.), A soja no Brasil. Campinas: ITAL, Campinas, Brasil, pp. 175-184.
  4. Bernard, R. L. 1971. Two major genes for time of flowering and maturity in soybeans. Crop Sci. 11 : 242-244. https://doi.org/10.2135/cropsci1971.0011183X001100020022x
  5. Bernard, R. L. 1972. Two genes affecting stem termination in soybeans. Crop Sci. 12, 235-239. https://doi.org/10.2135/cropsci1972.0011183X001200020028x
  6. Bisen, A., D. Khare, P. Nair, and N. Tripathi, 2015. SSR analysis of 38 genotypes of soybean (Glycine Max (L.) Merr.) genetic diversity in India. Physiol. Mol. Biol. Plants 21 : 109-115. https://doi.org/10.1007/s12298-014-0269-8
  7. Bonato, E. R. and N. A. Vello. 1999. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet. Mol. Biol. 22 : 229-232. https://doi.org/10.1590/S1415-47571999000200016
  8. Buzzell, R. I. 1971. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can. J. Gene Cytol. 13 : 703-707. https://doi.org/10.1139/g71-100
  9. Buzzell, R. I. and H. D. Voldeng. 1980. Inheritance of insensitivity to long daylength. Soybean Genet. Newsl. 7 : 26-29.
  10. Chen, G. H. and P. Wiatrak. 2010. Soybean development and yield are influenced by planting date and environmental conditions in the southeastern coastal plain, United States. Agron. J. 102 : 1731-1737. https://doi.org/10.2134/agronj2010.0219
  11. Cober, E. R., S. J. Molnar, M. Charette, and H. D. Voldeng. 2010. A new locus for early maturity in soybean. Crop Sci. 50 : 524-527. https://doi.org/10.2135/cropsci2009.04.0174
  12. Cober, E. R. and H. D. Voldeng. 2001. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci. 41 : 698-701. https://doi.org/10.2135/cropsci2001.413698x
  13. Cox, W. J. and G. D. Jolliff. 1986. Growth and yield of sunflower and soybean under soil water deficits. Agron. J. 78 : 226-230. https://doi.org/10.2134/agronj1986.00021962007800020002x
  14. Downs, J. R. and J. F. Thomas. 1990. Morphology and reproductive development of soybean under artificial conditions. Biotronics. 19 : 19-32.
  15. Fageria, N. K. 1989. Solos tropicais e aspectos fisiológicos das culturas. Brasilia: Embrapa-DPU, Brasilia, Brasil.
  16. Frederick, J. R., C. R. Camp, and P. J. Bauer. 2001. Droughtstress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci. 41 : 759-763. https://doi.org/10.2135/cropsci2001.413759x
  17. Fukui, J. and M. Arai. 1951. Ecological studies on Japanese soy-bean varieties. I. Classification of soy-bean varieties on the basis of the days from germination to blooming and from blooming to ripening with special reference to their geographical differentiation. Japan J. Breed. 1 : 27-39. https://doi.org/10.1270/jsbbs1951.1.27
  18. Gai, J. Y., Y. S. Wang, M. C. Zhang, J. A. Wang, and R. Z. Chang. 2001. Studies on the classification of maturity groups of soybeans in China. Acta Agron. Sin. 27 : 286-292. https://doi.org/10.3321/j.issn:0496-3490.2001.03.003
  19. Garner, W.W. and H.A. Allard. 1930. Photoperiodic response of soybeans in relation to temperature and other environmental factors. J. Agric. Res. 41 : 719-735.
  20. Hadley, P., E. H. Roberts, R. J. Summerfield, and F. R. Minchin. 1984. Effects of temperature and photoperiod on flowering in Soya bean [Glycine max (L.) Merrill]: a quantitative model. Ann. Bot. 53 : 669-681. https://doi.org/10.1093/oxfordjournals.aob.a086732
  21. Hartwig, E. E. 1973. Varietal development. in: Soybeans: Improvement, Production and Uses, Caldwell, B.E. Ed., Madison, WI, pp. 187-207.
  22. Heatherly, L. G. and J. R. Smith. 2004. Effect of soybean stem growth habit on height and node number after beginning bloom in the midsouthern USA. Crop Sci. 44 : 1855-1858. https://doi.org/10.2135/cropsci2004.1855
  23. Hipparagi, Y., R. Singh, D. R. Choudhury, and V. Gupta. 2017. Genetic diversity and population structure analysis of Kala bhat (Glycine max (L.) Merrill) genotypes using SSR markers. Hereditas. 154 : 9. https://doi.org/10.1186/s41065-017-0030-8
  24. Hofstrand, D. 2011. Climate Change Beginning to Impact Global Crop Production. AgMRC Renewable Energy & Climate Change Newsletter. Available online: https://www.agmrc.org/renewable-energy/climate-change-and-agriculture/climate-change-beginning-to-impact-global-crop-production (accessed on September 2011).
  25. Hollinger, S. E. and S. A. Changnon. 1993. Response of corn and soybean yields to precipitation augmentation, and implications for weather modification. in: Illinois Bulletin 73, Illinois State Water Survey, Illinois.
  26. Hu, Z., D. Zhang, G. Zhang, G. Kan, D. Hong, and D. Yu. 2014. Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.). Breed Sci. 63 : 441-449. https://doi.org/10.1270/jsbbs.63.441
  27. Kantolic, A. G. and G. A. Slafer. 2007. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann. Bot. 99 : 925-933. https://doi.org/10.1093/aob/mcm033
  28. Korte, L. L., J. H. Williams, J. E. Specht, and R. C. Sorensen. 1983. Irrigation of Soybean Genotypes During Reproductive Ontogeny. I: Yield Component Responses. Crop Sci. 23 : 528-533. https://doi.org/10.2135/cropsci1983.0011183X002300030020x
  29. Kumar, A., V. Pandey, A. M. Shekh, and M. Kumar. 2008. Growth and yield response of soybean (Glycine max L.) in relation to temperature, photoperiod and sunshine duration at Anand, Gujarat, India. Am. Eurasian J. Agron. 1 : 45-50.
  30. Lee, S. H., M. A. Bailey, M. A. R. Mian, T. E. Carter, D. A. Ashley, R. S. Hussey, W. A. Parrott, and H. R. Boerma. 1996. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci. 36 : 728-735. https://doi.org/10.2135/cropsci1996.0011183X003600030035x
  31. Liu, X., J. A. Wu, H. Ren, Y. Qi, C. Li, J. Cao, X. Zhang, Z. Zhang, Z. Cai, and J. Gai. 2017. Genetic variation of world soybean maturity date and geographic distribution of maturity groups. Breed Sci. 67 : 221-232. https://doi.org/10.1270/jsbbs.16167
  32. Mason, A. S. 2015. SSR genotyping. Methods Mol. Biol. 1245 : 77-89. https://doi.org/10.1007/978-1-4939-1966-6_6
  33. McBlain, B. A. and R. L. Bernard. 1987. A new gene affecting the time of flowering and maturity in soybeans. J. Hered. 78 : 160-162. https://doi.org/10.1093/oxfordjournals.jhered.a110349
  34. Meckel, L., D. B. Egli, R. E. Phillips, D. Radcliffe, and J. E. Leggett. 1984. Effect of moisture stress on seed growth in soybean. Agron. J. 76 : 647-650. https://doi.org/10.2134/agronj1984.00021962007600040033x
  35. Pandey, P. K., W. A. T. Herrera, and J. W. Pendleton. 1984. Drought responses of grain legumes under irrigation gradient: U. Plant water status and canopy temperature. Agron. J. 76 : 553-557. https://doi.org/10.2134/agronj1984.00021962007600040010x
  36. Park, M. R., M. J. Seo, Y. Y. Lee, and C. H. Park. 2016. Selection of Useful Germplasm Based on the Variation Analysis of Growth and Seed Quality of Soybean Germplasms Grown at Two Different Latitudes. Plant Breed Biotech. 4 : 462-474. https://doi.org/10.9787/PBB.2016.4.4.462
  37. Penariol, A. 2000. Soja: Cultivares no lugar certo. Informacoes Agronomicas. 90 : 13.
  38. Rodrigues, J., F. Miranda, N. Piovesan, A. Ferreira, M. Ferreira, C. Cruz, E. Barros, and M. Alves. 2016. QTL mapping for yield components and agronomic traits in a Brazilian soybean population. Crop Breed Appl. Biotechnol. 16 : 265-273. https://doi.org/10.1590/1984-70332016v16n4a41
  39. Rudelsheim, P. L. J. and G. Smets. 2014. Baseline information on agricultural practices in the EU Soybean (Glycine max (L.) Merr.). Available online: http://www.europabio.org/baseline-information-agricultural-practices-eu-soybean-glycine-max-l-merr (accessed on 8 May 2014).
  40. Rural Development Administration (RDA). 2012. Agricultural Science Technology Standards for Investigation of Research (Korean).
  41. Saito, M. and K. Hashimoto. 1980. Classification, distribution and cultivation characterizations of varieties. in: Soybean ecology and cultivation technology, Saito, M. and T. Okubo. Eds., Rural Culture Association Japan, Tokyo, Japan, pp. 37-62.
  42. Saryoko, A., K. Homma, I. Lubis, and T. Shiraiwa. 2017. Plant development and yield components under a tropical environment in soybean cultivars with temperate and tropical origins. Plant Prod. Sci. 20 : 375-383. https://doi.org/10.1080/1343943X.2017.1356203
  43. Sato, K. 1976. The growth responses of soybean plant to photoperiod and temperature. I. Response in vegetative growth. Proc. Crop Sci. Soc. Japan 45 : 443-449. https://doi.org/10.1626/jcs.45.443
  44. Sebastian, S. A., L. G. Streit, P. A. Stephens, J. A. Thompson, B. R. Hedges, M. A. Fabrizius, J. F. Soper, D. H. Schmidt, R. L. Kallem, M. A. Hinds, L. Feng, and J. A. Hoeck. 2010. Context-specific marker-assisted selection for improved grain yield in elite soybean populations. Crop Sci. 50 : 1196-1206. https://doi.org/10.2135/cropsci2009.02.0078
  45. Specht, J. E., K. Chase, M. Macrander, G. L. Graef, J. Chung, J. P. Markwell, M. Germann, J. H. Orf, and K. G. Lark. 2001. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci. 41 : 493-509. https://doi.org/10.2135/cropsci2001.412493x
  46. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 : 1596-1599. https://doi.org/10.1093/molbev/msm092
  47. Thompson, J. A., R. L. Bernard, and R. L. Nelson. 1997. A third allele at the soybean dt1 locus. Crop Sci. 37 : 757-762. https://doi.org/10.2135/cropsci1997.0011183X003700030011x
  48. Thompson, L. M. 1969. Weather and technology in the production of corn in the U.S. Corn Belt. Agron. J. 61 : 453-456. https://doi.org/10.2134/agronj1969.00021962006100030037x
  49. Van Schaik, P. H. and A. H. Probst. 1958. Effects of some environmental factors on flower production and reproductive efficiency in soybeans. Agron. J. 50 : 192-197. https://doi.org/10.2134/agronj1958.00021962005000040007x
  50. Watanabe, S., K. Harada, and J. Abe. 2012. Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci. 61 : 531-543. https://doi.org/10.1270/jsbbs.61.531
  51. Watanabe, S., R. Hideshima, Z. Xia, Y. Tsubokura, S. Sato, Y. Nakamoto, N. Yamanaka, R. Takahashi, M. Ishimoto, T. Anai, S. Tabata, and K. Harada. 2009. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182 : 1251-1262. https://doi.org/10.1534/genetics.108.098772
  52. Woodworth, C. M. 1932. Genetics and breeding in the improvement of the soybean. Illinois Agr. Exp. Sta. Bull. 384 : 297-404.
  53. Xia, Z. J., S. Watanabe, T. Yamada, S. Tsubokura, H. Nakashima, H. Zhai, T. Anai, S. Sato, T. Yamazaki, S. Lu, H. Wu, S. Tabata, and K. Harada. 2012. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1, which regulates photoperiodic flowering. Proc. Natl. Acad. Sci. USA 109 : E2155-2164. https://doi.org/10.1073/pnas.1117982109
  54. Xu, M., Z. Xu, B. Liu, F. Kong, Y. Tsubokura, S. Watanabe, Z. Xia, K. Harada, A. Kanazawa, T. Yamada, and J. Abe. 2013. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 13 : 91. https://doi.org/10.1186/1471-2229-13-91
  55. Yamada, T., M. Hajika, N. Yamada, K. Hirata, A. Okabe, N. Oki, K. Takahashi, K. Seki, K. Okano, Y. Fujita, A. Kaga, T. Shimizu, T. Sayama, and M. Ishimoto. 2012. Effects on flowering and seed yield of dominant alleles at maturity loci E2 and E3 in a Japanese cultivar, Enrei. Breed Sci. 61 : 653-660. https://doi.org/10.1270/jsbbs.61.653
  56. Zhai, H., S. Lu, Y. Wang, X. Chen, H. Ren, J. Yang, W. Cheng, C. Zong, H. Gu, H. Qiu, H. Wu, X. Zhang, T. Cui, and Z. Xia. 2014. Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS One 9 : e97636. https://doi.org/10.1371/journal.pone.0097636
  57. Zhang, G. W., S. C. Xu, W. H. Mao, Q. Z. Hu, and Y. M. Gong. 2013. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. J. Zhejiang Univ. Sci. B. 14 : 279-288.
  58. Zhang, W. K., Y. J. Wang, G. Z. Luo, J. S. Zhang, C. Y. He, X. L. Wu, J. Y. Gai, and S. Y. Chen. 2004. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor. Appl. Genet. 108 : 1131-1139. https://doi.org/10.1007/s00122-003-1527-2
  59. Zhang, X., W. Wang, N. Guo, Y. Zhang, Y. Bu, J. Zhao, and H. Xing. 2018. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics 19 : 226. https://doi.org/10.1186/s12864-018-4582-4