DOI QR코드

DOI QR Code

Fabrication and Characterization of Meta-Aramid-Based Nanocomposite Films Reinforced with Graphene

그래핀이 보강된 메타-아라미드 기반 나노복합필름의 제조와 특성분석

  • Jeon, Gil-Woo (Korea Textile Development Institute) ;
  • Jeong, Young Gyu (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 전길우 (한국섬유개발연구원) ;
  • 정영규 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2019.08.23
  • Accepted : 2019.09.30
  • Published : 2019.10.31

Abstract

Herein, we report the microstructures and thermal and electrical properties of meta-aramid-based nanocomposite films containing different graphene contents of 0-10.0 wt%, which are fabricated by solution-casting of meta-aramid and graphene mixtures in N,N-dimethylacetamide and lithium chloride. The microstructure, thermal stability, and dynamic mechanical thermal and electrical properties of the nanocomposite films were investigated by considering the dispersion and loading content of the graphene sheets. The electron microscopic images and X-ray diffraction patterns revealed that the graphene sheets were well dispersed in the nanocomposite films with relatively low graphene loadings of 0.1-1.0 wt%. However, partially ordered graphene aggregates were formed in the nanocomposite films with high graphene contents of 3.0-10.0 wt%. The thermal stability and dynamic mechanical thermal properties were observed to increase with the graphene content in the nanocomposite films. The electrical percolation threshold of the nanocomposite films was attained at a critical graphene content between 1.0 wt% and 3.0 wt%. Consequently, the electrical resistivity decreased substantially from ${\sim}10^{16}{\Omega}cm$ cm of the neat meta-aramid film to ${\sim}10^2{\Omega}cm$ of the nanocomposite film with 10.0 wt% graphene loading.

Keywords

References

  1. P. Nimmanpipug, K. Tashiro, and O. Rangsiman, “Factors Governing the Three-dimensional Hydrogen-bond Network Structure of Poly(m-phenylene isophthalamide) and a Series of Its Model Compounds (4): Similarity in Local Conformation and Packing Structure between a Complicated Three-arm Model Compound and the Linear Model Compounds”, J. Phys. Chem. B, 2006, 110, 20858-20864. https://doi.org/10.1021/jp062058r
  2. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 2008, 321, 385-388. https://doi.org/10.1126/science.1157996
  3. J. Campos-Delgado, Y. A. Kim, T. Hayashi, A. Morelos- Gomez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R. D. Shull, M. S. Dresselhaus, and M. Terrones, "Thermal Stability Studies of CVD-grown Graphene Nanoribbons: Defect Annealing and Loop Formation", Chem. Phys. Lett., 2009, 469, 177-182. https://doi.org/10.1016/j.cplett.2008.12.082
  4. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphenebased Ultracapacitors", Nano Lett., 2008, 8, 3498-3502. https://doi.org/10.1021/nl802558y
  5. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and Extrinsic Performance Limits of Graphene Devices on $SiO_2$", Nat. Nanotechnol., 2008, 3, 206-209. https://doi.org/10.1038/nnano.2008.58
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 2004, 306, 666-669. https://doi.org/10.1126/science.1102896
  7. A. K. Geim and K. S. Novoselov, "The Rise of Graphene", Nat. Mater., 2007, 6, 183-191. https://doi.org/10.1038/nmat1849
  8. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based Composite Materials”, Nature, 2006, 442, 282-286. https://doi.org/10.1038/nature04969
  9. H. Kim, A. A. Abdala, and C. W. Macosko, “Graphene/Polymer Nanocomposites”, Macromolecules, 2010, 43, 6515-6530. https://doi.org/10.1021/ma100572e
  10. K. Hu, D. D. Kulkarni, I. Choi, and V. V. Tsukruk, "Graphenepolymer Nanocomposites for Structuraland Functional Applications", Prog. Polym. Sci., 2014, 39, 1934-1972. https://doi.org/10.1016/j.progpolymsci.2014.03.001
  11. G. W. Jeon and Y. G. Jeong, "Electric Heating Films Based on m-aramid Nanocomposites Containing Hybrid Fillers of Graphene and Carbon Nanotube", J. Mater. Sci., 2013, 48, 4041-4049. https://doi.org/10.1007/s10853-013-7216-x
  12. L. Staudenmaier, "Verfahren zur Darstellung der Graphitsäure", Ber. Dtsch. Bot. Ges., 1898, 31, 1481-1499. https://doi.org/10.1002/cber.18980310237
  13. I.-H. Kim and Y. G. Jeong, "Polylactide/exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechnaical Modulus, and Electrical Conductivity", J. Polym. Sci. Part B: Polym. Phys., 2010, 48, 850-858. https://doi.org/10.1002/polb.21956
  14. E. Lee and Y. G. Jeong, "Electrical and Dielectric Properties of Poly(1,3,4-oxdiazole) Nanocomposite Films with Graphene Sheets Dispersed in Layers", Fiber. Polym., 2015, 16, 2021-2027. https://doi.org/10.1007/s12221-015-5479-3
  15. S. Ansari and E. P. Giannelis, "Functionalized Graphene Sheet-poly(vinylidene fluoride) Conductive Nanocomposites", J. Polym. Sci. Part B: Polym. Phys., 2009, 47, 888-897. https://doi.org/10.1002/polb.21695
  16. S. Villar-Rodil, J. I. Paredes, A. Martinez-Alonso, and J. M. D. Tascon, "Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers", Chem. Mater., 2001, 13, 4297-4304. https://doi.org/10.1021/cm001219f
  17. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, "Recent Advances in Graphene Based Polymer Composites", Prog. Polym. Sci., 2010, 35, 1350-1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005
  18. S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, "Flexible Conductive Graphene/poly(vinyl chloride) Composite Thin Films with High Mechanical Strength and Thermal Stability", Carbon, 2011, 49, 198-205. https://doi.org/10.1016/j.carbon.2010.09.004
  19. B.-X. Yang, J.-H. Shi, K. P. Pramoda, and S. H. Goh, "Enhancement of the Mechanical Properties of Polypropylene Using Polypropylene-grafted Multiwalled Carbon Nanotubes", Compos. Sci. Technol., 2008, 68, 2490-2497. https://doi.org/10.1016/j.compscitech.2008.05.001