DOI QR코드

DOI QR Code

Confirmation of The Fouling Phenomena in CDI Process and The Establishment of Its Removal Process Conditions

CDI 전극 내 파울링 현상 확인 및 제거공정 조건의 확립

  • Kim, Tae Yeong (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 김태영 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2019.10.25
  • Accepted : 2019.10.29
  • Published : 2019.10.31

Abstract

In this study, The experiments of the confirmation of the fouling phenomena in CDI process and the establishment of its removal process conditions were carried out. The foulant concentrations of humic acid sodium salt (HA) added to the feed solution were 5, 10, 15 mg/L, respectively. The occurrence of fouling under the certain adsorption/desorption conditions could be confirmed with an increase in adsorption and desorption concentration curve over time. Both the voltage and time in adsorption and desorption processes were changed to eliminate the fouled pollutants. Typically, the fouling removal condition was found at the adsorption condition 1.2 V/5 min and the desorption condition -3 V/2 min, respectively.

본 논문에서는 축전식 탈염 공정에서 파울링 현상의 확인과 파울링의 제거공정 조건을 확립하는 연구를 진행하였다. 공급액에 첨가된 파울링 유발 물질인 Humic acid sodium salt (HA)의 농도는 5, 10, 15 mg/L이었다. 주어진 일반의 흡/탈착 조건에서 파울링의 발생은 시간이 지남에 따라 흡착과 탈착 농도의 증가로 확인할 수 있었다. 파울링 현상을 제거하기 위해 흡착 및 탈착에서의 전압과 시간을 변경하였다. 이로부터 흡착 조건 1.2 V/5 min, 탈착 조건 -3 V/2 min에서 파울링 제거를 확인하였다.

Keywords

References

  1. M. Mossad and L. Zou, "Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts", J. Hazard. Mater., 244, 387 (2013). https://doi.org/10.1016/j.jhazmat.2012.11.062
  2. M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated caron cloth for capacitive deionization of NaCl solution", J Colloid Interf. Sci., 264(2), 414 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  3. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  4. T. J. Welgemoed and C. F. Schutte, "Capacitive deionization technology: An alternative desalination solution", Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  5. J. H. Ryu, T. J. Kim, T. Y. Lee, and I. B. Lee, "A study on modeling and simulation of capacitive deionization process for waste water treatment", J. Taiwan. Inst. Chem. E., 41, 506 (2010). https://doi.org/10.1016/j.jtice.2010.04.003
  6. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, "Review on carbon-based composite materials for capacitive deionization", RSC Adv., 5, 15205 (2015). https://doi.org/10.1039/C4RA14447C
  7. J. W. Lee, H. I. Kim, H. J. Kim, H. S. Shin, J. S. Kim, B. I. Jeong, and S. G. Park, "Desalination effects of capacitive deionization process using activated carbon composite electrodes", J. Korean Electrochem. Soc., 12, 287 (2009). https://doi.org/10.5229/JKES.2009.12.3.287
  8. Z. Chen, C. Song, X. Sun, H. Guo, and G. Zhu, "Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes", Desalination, 267, 239 (2011). https://doi.org/10.1016/j.desal.2010.09.033
  9. B. Jia and W. Zhang, "Preparation and application of electrodes in capacitive deionization (CDI): A state-of-art review", Nanoscale. Res. Lett., 11, 64 (2016). https://doi.org/10.1186/s11671-016-1284-1
  10. P. Xu, J. E. Drewes, D. Heil, and G. Wang, "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water Res., 42, 2605 (2008). https://doi.org/10.1016/j.watres.2008.01.011
  11. L. Zou, G. Morris, and D. Qi, "Using activated carbon electrode in electrosorptive deionisation of brackish water", Desalination, 225, 329 (2008). https://doi.org/10.1016/j.desal.2007.07.014
  12. J. S. Kim, J. H. Jung, and J. W. Rhim, "Performance study of membrane capacitive deionization process applied byperfluoropolymer and aminated poly(ether imide) ion exchange membranes", Membr. J., 25, 60 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.60
  13. S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, "Water desalination using capacitive deionization with microporous carbon electrodes", ACS Appl. Mater. Interfaces, 4, 1194 (2012). https://doi.org/10.1021/am201683j
  14. M. A. Anderson, A. L. Cudero, and J. Palma, "Effective modified carbon nanofibers as electrodes for capacitive deionization process", Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  15. W. S. Yun, S. I. Cheong, and J. W. Rhim, "Effect of ion exchange capacity on salt removal rate in membrane capacitive deionization process", Membr. J., 28, 332 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.332
  16. Y. J. Song, W. S. Yun, and J. W. Rhim, "Studies of performance and enlarged capacity through multi- stages stacked module in membrane capacitive deionization process", Membr. J., 27, 449 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.449
  17. C. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Fouling of reverse osmosis and nanofiltration membranes by humic acid-effects of solution composition and hydrodynamic conditions", J. Membr. Sci., 290, 86 (2007). https://doi.org/10.1016/j.memsci.2006.12.017
  18. J. J. Alberts, Z. Filip, and N. Hertkorn, "Fulvic and humic acids isolated from groundwater: Compositional characteristics and cation binding", J. Contam. Hydrol., 11, 317 (1992). https://doi.org/10.1016/0169-7722(92)90022-7