References
- Cho, M. A., Han, S., Lim, Y. R., Kim, V., Kim, H. and Kim, D. (2019) Streptomyces cytochrome P450 enzymes and their roles in the biosynthesis of macrolide therapeutic agents. Biomol. Ther. (Seoul) 27, 127-133. https://doi.org/10.4062/biomolther.2018.183
- Crespi, C. L. and Miller, V. P. (1997) The R144C change in the CYP2C9* 2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 7, 203-210. https://doi.org/10.1097/00008571-199706000-00005
- Dai, D. P., Xu, R. A., Hu, L. M., Wang, S. H., Geng, P. W., Yang, J. F., Yang, L. P., Qian, J. C., Wang, Z. S., Zhu, G. H., Zhang, X. H., Ge, R. S., Hu, G. X. and Cai, J. P. (2014) CYP2C9 polymorphism analysis in Han Chinese populations: Building the largest allele frequency database. Pharmacogenomics J. 14, 85-92. https://doi.org/10.1038/tpj.2013.2
- Danielson, P. B. (2002) The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 3, 561-597. https://doi.org/10.2174/1389200023337054
- Delozier, T. C., Kissling, G. E., Coulter, S. J., Dai, D., Foley, J. F., Bradbury, J. A., Murphy, E., Steenbergen, C., Zeldin, D. C. and Goldstein, J. A. (2007) Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab. Dispos. 35, 682-688. https://doi.org/10.1124/dmd.106.012823
- DeLozier, T. C., Lee, S. C., Coulter, S. J., Goh, B. C. and Goldstein, J. A. (2005) Functional characterization of novel allelic variants of CYP2C9 recently discovered in Southeast Asians. J. Pharmacol. Exp. Ther. 315, 1085-1090. https://doi.org/10.1124/jpet.105.091181
- Gray, I. C., Nobile, C., Muresu, R., Ford, S. and Spurr, N. K. (1995) A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24. Genomics 28, 328-332. https://doi.org/10.1006/geno.1995.1149
- Guengerich, F. P. (2015) Human cytochrome P450 enzymes. In Cytochrome P450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.), pp. 523-785. Springer, London.
- Guengerich, F. P., Martin, M. V., Sohl, C. D. and Cheng, Q. (2009) Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4, 1245-1251. https://doi.org/10.1038/nprot.2009.121
- Guengerich, F. P., Waterman, M. R. and Egli, M. (2016) Recent structural insights into cytochrome P450 function. Trends Pharmacol. Sci. 37, 625-640. https://doi.org/10.1016/j.tips.2016.05.006
- Guo, Y., Wang, Y., Si, D., Fawcett, P. J., Zhong, D. and Zhou, H. (2005) Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13. Xenobiotica 35, 853-861. https://doi.org/10.1080/00498250500256367
- Han, S. M., Park, J., Lee, J. H., Lee, S. S., Kim, H., Han, H., Kim, Y., Yi, S., Cho, J. Y., Jang, I. J. and Lee, M. G. (2017) Targeted next-generation sequencing for comprehensive genetic profiling of pharmacogenes. Clin. Pharmacol. Ther. 101, 396-405. https://doi.org/10.1002/cpt.532
- Imai, J., Ieiri, I., Mamiya, K., Miyahara, S., Furuumi, H., Nanba, E., Yamane, M., Fukumaki, Y., Ninomiya, H., Tashiro, N., Otsubo, K. and Higuchi, S. (2000) Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. Pharmacogenetics 10, 85-89. https://doi.org/10.1097/00008571-200002000-00011
- Jeong, D., Park, H. G., Lim, Y. R., Lee, Y., Kim, V., Cho, M. A. and Kim, D. (2018) Terfenadine metabolism of human cytochrome P450 2J2 containing genetic variations (G312R, P351L and P115L). Drug Metab. Pharmacokinet. 33, 61-66. https://doi.org/10.1016/j.dmpk.2017.10.004
- Kim, V., Yeom, S., Lee, Y., Park, H. G., Cho, M. A., Kim, H. and Kim, D. (2018) In vitro functional analysis of human cytochrome P450 2A13 genetic variants: P450 2A13*2, *3, *4, and *10. J. Toxicol. Environ. Health A 81, 493-501. https://doi.org/10.1080/15287394.2018.1460784
- King, B. P., Khan, T. I., Aithal, G. P., Kamali, F. and Daly, A. K. (2004) Upstream and coding region CYP2C9 polymorphisms: Correlation with warfarin dose and metabolism. Pharmacogenetics 14, 813- 822. https://doi.org/10.1097/00008571-200412000-00004
- Lee, I. S. and Kim, D. (2011) Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch. Pharm. Res. 34, 1799-1816. https://doi.org/10.1007/s12272-011-1103-2
- Lee, Y., Park, H. G., Kim, V., Cho, M. A., Kim, H., Ho, T. H., Cho, K. S., Lee, I. S. and Kim, D. (2018) Inhibitory effect of alpha-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem. Biol. Interact. 289, 90-97. https://doi.org/10.1016/j.cbi.2018.04.029
- Maekawa, K., Adachi, M., Matsuzawa, Y., Zhang, Q., Kuroki, R., Saito, Y. and Shah, M. B. (2017) Structural basis of single-nucleotide polymorphisms in cytochrome P450 2C9. Biochemistry 56, 5476- 5480. https://doi.org/10.1021/acs.biochem.7b00795
- Maekawa, K., Fukushima-Uesaka, H., Tohkin, M., Hasegawa, R., Kajio, H., Kuzuya, N., Yasuda, K., Kawamoto, M., Kamatani, N., Suzuki, K., Yanagawa, T., Saito, Y. and Sawada, J. (2006) Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet. Genomics 16, 497-514. https://doi.org/10.1097/01.fpc.0000215069.14095.c6
- Miners, J. O. and Birkett, D. J. (1998) Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45, 525-538. https://doi.org/10.1046/j.1365-2125.1998.00721.x
- Nebert, D. W. and Russell, D. W. (2002) Clinical importance of the cytochromes P450. Lancet 360, 1155-1162. https://doi.org/10.1016/S0140-6736(02)11203-7
- Parikh, A., Gillam, E. M. and Guengerich, F. P. (1997) Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat. Biotechnol. 15, 784-788. https://doi.org/10.1038/nbt0897-784
- Shimada, T., Yamazaki, H., Mimura, M., Inui, Y. and Guengerich, F. P. (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414-423.
- Si, D., Guo, Y., Zhang, Y., Yang, L., Zhou, H. and Zhong, D. (2004) Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics 14, 465-469. https://doi.org/10.1097/01.fpc.0000114749.08559.e4
- Steward, D. J., Haining, R. L., Henne, K. R., Davis, G., Rushmore, T. H., Trager, W. F. and Rettie, A. E. (1997) Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7, 361-367. https://doi.org/10.1097/00008571-199710000-00004
- Sullivan-Klose, T. H., Ghanayem, B. I., Bell, D. A., Zhang, Z. Y., Kaminsky, L. S., Shenfield, G. M., Miners, J. O., Birkett, D. J. and Goldstein, J. A. (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341-349. https://doi.org/10.1097/00008571-199608000-00007
- Van Booven, D., Marsh, S., McLeod, H., Carrillo, M. W., Sangkuhl, K., Klein, T. E. and Altman, R. B. (2010) Cytochrome P450 2C9- CYP2C9. Pharmacogenet. Genomics 20, 277-281. https://doi.org/10.1097/fpc.0b013e3283349e84
- Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinkovic, D. and Jhoti, H. (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424, 464-468. https://doi.org/10.1038/nature01862
Cited by
- Lack of Correlation between In Vitro and In Vivo Studies on the Inhibitory Effects of (‒)-Sophoranone on CYP2C9 Is Attributable to Low Oral Absorption and Extensive Plasma Protein Binding of ( vol.12, pp.4, 2020, https://doi.org/10.3390/pharmaceutics12040328
- Functional Assessment of 12 Rare Allelic CYP2C9 Variants Identified in a Population of 4773 Japanese Individuals vol.11, pp.2, 2019, https://doi.org/10.3390/jpm11020094
- Structure-Functional Analysis of Human Cytochrome P450 2C8 Using Directed Evolution vol.13, pp.9, 2019, https://doi.org/10.3390/pharmaceutics13091429