DOI QR코드

DOI QR Code

Functional Characterization of Pharmcogenetic Variants of Human Cytochrome P450 2C9 in Korean Populations

  • Cho, Myung-A (Department of Biological Sciences, Konkuk University) ;
  • Yoon, Jihoon G. (Department of Pharmacology, Yonsei University College of Medicine) ;
  • Kim, Vitchan (Department of Biological Sciences, Konkuk University) ;
  • Kim, Harim (Department of Biological Sciences, Konkuk University) ;
  • Lee, Rowoon (Department of Biological Sciences, Konkuk University) ;
  • Lee, Min Goo (Department of Pharmacology, Yonsei University College of Medicine) ;
  • Kim, Donghak (Department of Biological Sciences, Konkuk University)
  • Received : 2019.07.01
  • Accepted : 2019.08.01
  • Published : 2019.11.01

Abstract

Human cytochrome P450 2C9 is a highly polymorphic enzyme that is required for drug and xenobiotic metabolism. Here, we studied eleven P450 2C9 genetic variants-including three novel variants F69S, L310V, and Q324X-that were clinically identified in Korean patients. P450 2C9 variant enzymes were expressed in Escherichia coli and their bicistronic membrane fractions were prepared The CO-binding spectra were obtained for nine enzyme variants, indicating P450 holoenzymes, but not for the M02 (L90P) variant. The M11 (Q324X) variant could not be expressed due to an early nonsense mutation. LC-MS/MS analysis was performed to measure the catalytic activities of the P450 2C9 variants, using diclofenac as a substrate. Steady-state kinetic analysis revealed that the catalytic efficiency of all nine P450 2C9 variants was lower than that of the wild type P450 2C9 enzyme. The M05 (R150L) and M06 (P279T) variants showed high $k_{cat}$ values; however, their $K_m$ values were also high. As the M01 (F69S), M03 (R124Q), M04 (R125H), M08 (I359L), M09 (I359T), and M10 (A477T) variants exhibited higher $K_m$ and lower $k_{cat}$ values than that of the wild type enzyme, their catalytic efficiency decreased by approximately 50-fold compared to the wild type enzyme. Furthermore, the novel variant M07 (L310V) showed lower $k_{cat}$ and $K_m$ values than the wild type enzyme, which resulted in its decreased (80%) catalytic efficiency. The X-ray crystal structure of P450 2C9 revealed the presence of mutations in the residues surrounding the substrate-binding cavity. Functional characterization of these genetic variants can help understand the pharmacogenetic outcomes.

Keywords

References

  1. Cho, M. A., Han, S., Lim, Y. R., Kim, V., Kim, H. and Kim, D. (2019) Streptomyces cytochrome P450 enzymes and their roles in the biosynthesis of macrolide therapeutic agents. Biomol. Ther. (Seoul) 27, 127-133. https://doi.org/10.4062/biomolther.2018.183
  2. Crespi, C. L. and Miller, V. P. (1997) The R144C change in the CYP2C9* 2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 7, 203-210. https://doi.org/10.1097/00008571-199706000-00005
  3. Dai, D. P., Xu, R. A., Hu, L. M., Wang, S. H., Geng, P. W., Yang, J. F., Yang, L. P., Qian, J. C., Wang, Z. S., Zhu, G. H., Zhang, X. H., Ge, R. S., Hu, G. X. and Cai, J. P. (2014) CYP2C9 polymorphism analysis in Han Chinese populations: Building the largest allele frequency database. Pharmacogenomics J. 14, 85-92. https://doi.org/10.1038/tpj.2013.2
  4. Danielson, P. B. (2002) The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 3, 561-597. https://doi.org/10.2174/1389200023337054
  5. Delozier, T. C., Kissling, G. E., Coulter, S. J., Dai, D., Foley, J. F., Bradbury, J. A., Murphy, E., Steenbergen, C., Zeldin, D. C. and Goldstein, J. A. (2007) Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab. Dispos. 35, 682-688. https://doi.org/10.1124/dmd.106.012823
  6. DeLozier, T. C., Lee, S. C., Coulter, S. J., Goh, B. C. and Goldstein, J. A. (2005) Functional characterization of novel allelic variants of CYP2C9 recently discovered in Southeast Asians. J. Pharmacol. Exp. Ther. 315, 1085-1090. https://doi.org/10.1124/jpet.105.091181
  7. Gray, I. C., Nobile, C., Muresu, R., Ford, S. and Spurr, N. K. (1995) A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24. Genomics 28, 328-332. https://doi.org/10.1006/geno.1995.1149
  8. Guengerich, F. P. (2015) Human cytochrome P450 enzymes. In Cytochrome P450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.), pp. 523-785. Springer, London.
  9. Guengerich, F. P., Martin, M. V., Sohl, C. D. and Cheng, Q. (2009) Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4, 1245-1251. https://doi.org/10.1038/nprot.2009.121
  10. Guengerich, F. P., Waterman, M. R. and Egli, M. (2016) Recent structural insights into cytochrome P450 function. Trends Pharmacol. Sci. 37, 625-640. https://doi.org/10.1016/j.tips.2016.05.006
  11. Guo, Y., Wang, Y., Si, D., Fawcett, P. J., Zhong, D. and Zhou, H. (2005) Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13. Xenobiotica 35, 853-861. https://doi.org/10.1080/00498250500256367
  12. Han, S. M., Park, J., Lee, J. H., Lee, S. S., Kim, H., Han, H., Kim, Y., Yi, S., Cho, J. Y., Jang, I. J. and Lee, M. G. (2017) Targeted next-generation sequencing for comprehensive genetic profiling of pharmacogenes. Clin. Pharmacol. Ther. 101, 396-405. https://doi.org/10.1002/cpt.532
  13. Imai, J., Ieiri, I., Mamiya, K., Miyahara, S., Furuumi, H., Nanba, E., Yamane, M., Fukumaki, Y., Ninomiya, H., Tashiro, N., Otsubo, K. and Higuchi, S. (2000) Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. Pharmacogenetics 10, 85-89. https://doi.org/10.1097/00008571-200002000-00011
  14. Jeong, D., Park, H. G., Lim, Y. R., Lee, Y., Kim, V., Cho, M. A. and Kim, D. (2018) Terfenadine metabolism of human cytochrome P450 2J2 containing genetic variations (G312R, P351L and P115L). Drug Metab. Pharmacokinet. 33, 61-66. https://doi.org/10.1016/j.dmpk.2017.10.004
  15. Kim, V., Yeom, S., Lee, Y., Park, H. G., Cho, M. A., Kim, H. and Kim, D. (2018) In vitro functional analysis of human cytochrome P450 2A13 genetic variants: P450 2A13*2, *3, *4, and *10. J. Toxicol. Environ. Health A 81, 493-501. https://doi.org/10.1080/15287394.2018.1460784
  16. King, B. P., Khan, T. I., Aithal, G. P., Kamali, F. and Daly, A. K. (2004) Upstream and coding region CYP2C9 polymorphisms: Correlation with warfarin dose and metabolism. Pharmacogenetics 14, 813- 822. https://doi.org/10.1097/00008571-200412000-00004
  17. Lee, I. S. and Kim, D. (2011) Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch. Pharm. Res. 34, 1799-1816. https://doi.org/10.1007/s12272-011-1103-2
  18. Lee, Y., Park, H. G., Kim, V., Cho, M. A., Kim, H., Ho, T. H., Cho, K. S., Lee, I. S. and Kim, D. (2018) Inhibitory effect of alpha-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem. Biol. Interact. 289, 90-97. https://doi.org/10.1016/j.cbi.2018.04.029
  19. Maekawa, K., Adachi, M., Matsuzawa, Y., Zhang, Q., Kuroki, R., Saito, Y. and Shah, M. B. (2017) Structural basis of single-nucleotide polymorphisms in cytochrome P450 2C9. Biochemistry 56, 5476- 5480. https://doi.org/10.1021/acs.biochem.7b00795
  20. Maekawa, K., Fukushima-Uesaka, H., Tohkin, M., Hasegawa, R., Kajio, H., Kuzuya, N., Yasuda, K., Kawamoto, M., Kamatani, N., Suzuki, K., Yanagawa, T., Saito, Y. and Sawada, J. (2006) Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet. Genomics 16, 497-514. https://doi.org/10.1097/01.fpc.0000215069.14095.c6
  21. Miners, J. O. and Birkett, D. J. (1998) Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45, 525-538. https://doi.org/10.1046/j.1365-2125.1998.00721.x
  22. Nebert, D. W. and Russell, D. W. (2002) Clinical importance of the cytochromes P450. Lancet 360, 1155-1162. https://doi.org/10.1016/S0140-6736(02)11203-7
  23. Parikh, A., Gillam, E. M. and Guengerich, F. P. (1997) Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat. Biotechnol. 15, 784-788. https://doi.org/10.1038/nbt0897-784
  24. Shimada, T., Yamazaki, H., Mimura, M., Inui, Y. and Guengerich, F. P. (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414-423.
  25. Si, D., Guo, Y., Zhang, Y., Yang, L., Zhou, H. and Zhong, D. (2004) Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics 14, 465-469. https://doi.org/10.1097/01.fpc.0000114749.08559.e4
  26. Steward, D. J., Haining, R. L., Henne, K. R., Davis, G., Rushmore, T. H., Trager, W. F. and Rettie, A. E. (1997) Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7, 361-367. https://doi.org/10.1097/00008571-199710000-00004
  27. Sullivan-Klose, T. H., Ghanayem, B. I., Bell, D. A., Zhang, Z. Y., Kaminsky, L. S., Shenfield, G. M., Miners, J. O., Birkett, D. J. and Goldstein, J. A. (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341-349. https://doi.org/10.1097/00008571-199608000-00007
  28. Van Booven, D., Marsh, S., McLeod, H., Carrillo, M. W., Sangkuhl, K., Klein, T. E. and Altman, R. B. (2010) Cytochrome P450 2C9- CYP2C9. Pharmacogenet. Genomics 20, 277-281. https://doi.org/10.1097/fpc.0b013e3283349e84
  29. Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinkovic, D. and Jhoti, H. (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424, 464-468. https://doi.org/10.1038/nature01862

Cited by

  1. Lack of Correlation between In Vitro and In Vivo Studies on the Inhibitory Effects of (‒)-Sophoranone on CYP2C9 Is Attributable to Low Oral Absorption and Extensive Plasma Protein Binding of ( vol.12, pp.4, 2020, https://doi.org/10.3390/pharmaceutics12040328
  2. Functional Assessment of 12 Rare Allelic CYP2C9 Variants Identified in a Population of 4773 Japanese Individuals vol.11, pp.2, 2019, https://doi.org/10.3390/jpm11020094
  3. Structure-Functional Analysis of Human Cytochrome P450 2C8 Using Directed Evolution vol.13, pp.9, 2019, https://doi.org/10.3390/pharmaceutics13091429