DOI QR코드

DOI QR Code

Carbonate Breccias of the Middle Cambrian Daegi Formation, Taebaeksan Basin

태백산분지 캠브리아 중기 대기층 내의 탄산염 각력암

  • Jang, Hwimin (Department of Geology, College of Natural Sciences, Kyungpook National University) ;
  • Son, Mira (Department of Geology, College of Natural Sciences, Kyungpook National University) ;
  • Ryu, In-Chang (Department of Geology, College of Natural Sciences, Kyungpook National University)
  • 장휘민 (경북대학교 자연과학대학 지질학과) ;
  • 손미라 (경북대학교 자연과학대학 지질학과) ;
  • 유인창 (경북대학교 자연과학대학 지질학과)
  • Received : 2019.09.28
  • Accepted : 2019.10.24
  • Published : 2019.10.28

Abstract

Carbonate breccias occur sporadically in the Middle Cambrian Daegi Formation on the southern limb of the Baegunsan Syncline, Taebaeksan Basin. These carbonate breccias have been largely interpreted either as sedimentary breccias or as tectonic, fault-related breccias. Recent study, however, indicates that the majority of these breccias are a solution-collapse breccia which is causally linked to the paleokarstification. Extensive karstification is attributed to prolonged subaerial exposure of the carbonate platform. The exposed surface is a record of interruption in sedimentation on the carbonate platform. In the stratigraphic record, such karst-related post-depositional features are recognized as meteoric diagenetic features, paleosols, and solution-collapse breccias. Solution-collapse breccias are particularly well preserved and most profound in the carbonate rocks below the major unconformities, which also are evidence of prolonged subaerial exposure. The Middle Cambrian Daegi Formation provides an example of solution-collapse breccias. The formation and preservation of the solution-collapse breccias imply that a stratigraphic discontinuity surface (unconformity) can be designated within the Daegi Formation.

태백산분지 백운산 향사대의 남쪽 경계부를 따라 대상으로 분포하는 캠브리아 중기 대기층 내에는 탄산염 각력암들이 국부적으로 발달한다. 대기층 내에 발달하는 탄산염 각력암들은 그동안 단층과 연계되어 발달하는 단층 각력암, 또는 퇴적 당시의 요인에 의한 퇴적 각력암 등으로 해석되어 왔다. 그러나 최근의 연구결과는 이러한 탄산염 각력암들의 대부분이 고기 카르스트의 형성과 성인적으로 연계되어 발달하는 용식 붕락 각력암이라는 것을 지시한다. 카르스트의 형성은 탄산염 대지의 장기간에 걸친 대기 노출에 기인하며 탄산염 대지에 있어서 퇴적작용의 중단을 의미한다. 대기 노출 과정 동안 카르스트의 발달과 연계되어 형성된 이러한 퇴적층들은 층서 기록상 천수에 의한 속성작용, 고토양층 및 용식 붕락 각력암 등으로 인지될 수 있다. 특히, 대기 노출면 하부에 발달하는 용식 붕락 각력암들은 비교적 보존이 잘 되기 때문에 탄산염 대지의 대기 노출에 대한 증거로 삼고 있으며, 층서 기록상 부정합과 밀접한 관계를 가지며 부정합면 직하부의 탄산염암층에 잘 나타난다. 캠브리아 중기 대기층 내에 발달하는 탄산염 각력암들의 대부분은 이러한 고기 카르스트의 형성과 연관된 용식 붕락 각력암의 예를 잘 보여준다. 대기층 내에 발달하는 용식 붕락 각력암들의 존재는, 곧 대기층 내에 고기 카르스트의 형성과 성인적으로 연계되는 대기 노출면 및 이에 따른 층서적 불연속면(부정합)의 존재를 시사한다.

Keywords

References

  1. Calner, M., Lehnert, O. and Nolvak, J. (2010) Palaeokarst evidence for widespread regression and subaerial exposure in the middle Katian (Upper Ordovician) of Baltoscandia: significance for global climate. Palaeogeography, Palaeoclimatology, Palaeoecology, v.296, p.235-247. https://doi.org/10.1016/j.palaeo.2009.11.028
  2. Cheong, C.H. (1969) Stratigraphy and paleontology of the Samcheog coalfield, Gangweondo, Korea (1). Journal of the Geological Society of Korea, v.5, p.13-56.
  3. Choi, D.K. (1998) The Yongwol Group (Cambrian-Ordovician) redefined: a proposal for the stratigraphic nomenclature of the Choson Supergroup. Geosciences Journal, v.2, p.220-234. https://doi.org/10.1007/BF02910166
  4. Choi, D.K. and Chough, S.K. (2005) The Cambrian-Ordovician stratigraphy of the Taebaeksan Basin, Korea: a review. Geosciences Journal, v.9, p.187-214. https://doi.org/10.1007/BF02910579
  5. Choi, D.K., Chough, S.K., Kwon, Y.K., Lee, S.-B., Woo, J., Kang, I., Lee, H.S., Lee, S.M., Shon, J.W., Shinn, Y.J. and Lee, D.-J. (2004) Taebaek Group (Cambrian-Ordovician) in the Seokgaejae section, Taebaeksan Basin: a refined lower Paleozoic stratigraphy in Korea. Geosciences Journal, v.8, p.125-151. https://doi.org/10.1007/BF02910190
  6. Choi, Y.S., Kim, J.C. and Lee, Y.I. (1993) Subtidial, flat-pebble conglomerates from the Early Ordovician Mungok Formation, Korea: origin and depositional process. Journal of Geological Society of Korea, v.29, p.15-29.
  7. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K. (2000) Tectonic and Sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, v.52, p.175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  8. Elrick, M. (1996) Sequence stratigraphy and platform evolution of Lower-Middle Devonian carbonates, eastern Great Basin. Geological Society of America Bulletin, v.108, p.392-416. https://doi.org/10.1130/0016-7606(1996)108<0392:SSAPEO>2.3.CO;2
  9. Esteban, M. and Klappa, C.F. (1983) Subaerial exposure environment. In Scholle, P.A., Bebout, D.G. and Moore, C.H. (ed.) Carbonate Depositional Environments. American Association of Petroleum Geologists Memoir, 33, p.1-54.
  10. Fritz, R.D., Wilson, J.L. and Yurewicz, D.A. (1993) Paleokarst related hydrocarbon reservoirs. Society of Economic Paleontologists and Mineralogists Core Workshop, 18, 275p.
  11. Geological Investigation Corps of Taebaeksan Region (GICTR) (1962) Report on the geology and mineral resources of the Taebaeksan Region. The Geological Society of Korea, Seoul, 89p.
  12. Hampton, M.A. (1972) The role of subaqueous debris flows in generating turbidity currents. Journal of Sedimentary Petrology. v.42, p.775-793.
  13. Han, K.S. (1969) Geology and ore deposit of the Yeonhwa Zinc Mine. Journal of the Korea Institute of Mining Geology, v.2, p.47-57 (in Korean).
  14. Harrison, R.S. and Steinen, R.P. (1978) Subaerial crusts, caliche profiles, and breccia horizons: comparison of some Holocene and Mississippian exposure surfaces, Barbados and Kentucky. Geological Society of America Bulletin, v.89, p.385-396. https://doi.org/10.1130/0016-7606(1978)89<385:SCCPAB>2.0.CO;2
  15. Hong, J., Cho, S.-H., Choh, S.-J., Woo. J. and Lee, D.-J. (2012) Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi Formation, Korea): metazoan buildup constituents in the aftermath of the Early Cambrian extinction event. Sedimentary Geology, v.253, p.47-57. https://doi.org/10.1016/j.sedgeo.2012.01.011
  16. James, N.P. and Choquette, P.W. (1988) Paleokarst. Springer-Verlag, New York, 416p.
  17. Johnson, A.M. (1970) Physical Process in Geology. Freeman, San Francisco, 571p.
  18. Kang, I. and Choi, D.K. (2007) Middle Cambrian trilobites and biostratigraphy of the Daegi Formation (Taebaek Group) in the Seokgaejae section, Taebaeksan Basin, Korea. Geosciences Journal, v.11, p.279-296. https://doi.org/10.1007/BF02857046
  19. Kerans, C. (1988) Karst-controlled reservoir heterogeneity in Ellenburger Group carbonates of west Texas. American Association of Petroleum Geologists Bulletin, v.72, p.1160-1183.
  20. Kerans, C. (1993) Description and interpretation of karstrelated breccia fabrics, Ellenburger Group, West Texas. In Fritz, R.D., Wilson, J.L. and Yurewicz, D.A. (ed.) Paleokarst related hydrocarbon reservoirs. Society of Economic Paleontologists and Mineralogists Core Workshop, 18, p.181-200.
  21. Kim, C.S., Choi, S.-G., Kim, G.-B., Kang, J., Kim, K.B., Kim, H., Lee, J. and Ryu, I.-C. (2017) Genetic environments of the high-purity limestone in the upper zone of the Daegi Formation at the Jeongseon-Samcheok area. Economic and Environmental Geology, v.50, p.287-302. https://doi.org/10.9719/EEG.2017.50.4.287
  22. Kim, J.Y. and Park, Y.A. (1981) Sedimentological study on the Pungchon and the Hwajeol formations, Gangweondo, Korea. Journal of the Geological Society of Korea, v.17, p.225-240.
  23. Knipe, R.J. (1989) Deformation mechanisms - recognition from natural tectonites. Journal of Structural Geology, v.11, p.127-146. https://doi.org/10.1016/0191-8141(89)90039-4
  24. Kobayashi, T. (1930) Cambrian and Ordovician faunas of South Korea and Bearing of the Tsinling-Keijo Line in Ordovician palaeogeography. Preceedings of the Imperial Academy, v.4, p.423-426. https://doi.org/10.2183/pjab1912.6.423
  25. Kobayashi, T. (1953) The Cambro-Ordovician formations and faunas of South Korea, Part IV, Geology of South Korea with special reference to the Limestone Plateau of Kogendo. Journal of the Faculty Science (University of Tokyo), Section II, v.12, p.217-275.
  26. Kobayashi, T. (1966) The Cambro-Ordovician formations and faunas of South Korea, Part X, Stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro-Ordovician formations and faunas of other areas, Section A, The Chosen Group of South Korea. Journal of the Faculty of Science (University of Tokyo), Section II, v.16, p.1-84.
  27. Kwon, Y.K., Chough, S.K., Choi, D.K. and Lee, D.J. (2006) Sequence stratigraphy of the Taebaek Group (Cambrian-Ordovician), mideast Korea. Sedimentary Geology, v.192, p.19-55. https://doi.org/10.1016/j.sedgeo.2006.03.024
  28. Lee, H.-Y., Roh, D.-S., Lee, B.-S. and Yi, M.-S. (1992) Small shelly fossils and conodonts from the Myobong and Daegi formations in Baegunsan Syncline, Yeongweol-Jeongseon area, Kangweon-do. Journal of the Paleontological Society of Korea, v.8, p.140-163.
  29. Lee, Y.I. and Kim, J.C (1992) Storm-influenced siliciclastic and carbonate ramp deposits, the Lower Ordovician Dumugol Formation, South Korea. Sedimentology, v.39, p.951-969. https://doi.org/10.1111/j.1365-3091.1992.tb01990.x
  30. Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Su, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. and Vernikovsky, V. (2008) Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, v.160, p.179-210. https://doi.org/10.1016/j.precamres.2007.04.021
  31. Lowe, D.R. (1979) Sediment gravity flows: their classification and some problems of application to natural flows and deposits. Society of Economic Paleontologists and Mineralogists Special Publication, 27, p.75-82.
  32. Middleton, G.V. and Hampton, M.A. (1973) Sediment gravity flows: mechanics of flow and deposition. In Turbidites and Deep Water Sedimentation. Pacific Section Society of Economic Paleontologists and Mineralogists Short Course, p.1-38.
  33. Mullins, H.T., Gardulski, A.F. and Mine, A.C. (1986) Catastrophic collapse of the west Florida carbonate platform margin. Geology, v.14, p.167-170. https://doi.org/10.1130/0091-7613(1986)14<167:CCOTWF>2.0.CO;2
  34. Mullins, H.T., Heath, K.C., van Buren, H.M. and Newton, C.R. (1984) Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank. Sedimentology, v.31, p.141-168. https://doi.org/10.1111/j.1365-3091.1984.tb01956.x
  35. Osleger, D.A. and Montanez, I.P. (1996) Cross-platform architecture of a sequence boundary in mixed siliciclastic-carbonate lithofacies, Middle Cambrian, southern Great Basin, USA. Sedimentology, v.43, p.197-217. https://doi.org/10.1046/j.1365-3091.1996.d01-13.x
  36. Park, B.-K. and Han, S.-J. (1986) Middle Cambrian ooid shoal deposits: the oolitic carbonate rocks of Lower Pungchon limestone Formation, Korea. Journal of the Geological Society of Korea, v.22, p.183-199 (in Korean with English abstract). https://doi.org/10.1144/GSL.SP.1986.022.01.17
  37. Park, B.-K. and Han, S.-J. (1987a) Origin of Red Argillaceous Composition in the Middle Cambrian Pungchon limestone Formation, Korea. Journal of the Geological Society of Korea, v.23, p.97-108 (in Korean with English abstract).
  38. Park, B.-K. and Han, S.-J. (1987b) Middle Cambrian carbonate fore-reef slope deposits of the upper part of Pungchon limestone Formation, Korea. Journal of the Geological Society of Korea, v.23, p.195-215 (in Korean with English abstract).
  39. Park, B.-K. and Han, S.-J. (1987c) Middle Cambrian back-reef deposits: carbonates interbedded in the lower part of Pungchon limestone Formation, Korea. Journal of the Geological Society of Korea, v.23, p.287-305 (in Korean with English abstract).
  40. Park, B.-K., Han, J.-H. and Han, S.-J. (1987) Cambrian peritidal mudstone deposits interbedded in the Pungchon limestone Formation, Korea. Journal of the Geological Society of Korea, v.23, p.60-66 (in Korean with English abstract).
  41. Park, T.-Y., Woo, J. and Choi, D.K. (2010) A trilobite fauna from the breccias of the Daegi Formation at the Dongjeom section, Taebaek, Korea and its geological implication. Journal of the Paleontological Society of Korea, v.26, p.173-181 (in Korean with English abstract).
  42. Ryu, I.-C. (2002) Tectonic and stratigraphic significance of the Middle Ordovician carbonate breccias in the Ogcheon Belt, South Korea. Island Arc, v.11, p.149-169. https://doi.org/10.1046/j.1440-1738.2002.00362.x
  43. Ryu, I.-C. (2003) Integrated stratigraphy approach for new additional limestone reserves in the Paleozoic Taebacksan Basin, Korea. Economic and Environmental Geology, v.36, p.59-74 (in Korean with English abstract).
  44. Ryu, I.-C., Doh, S.-J. and Choi, S.-G. (1997) Carbonate breccias of the Lower Ordovician Maggol limestone: its genetic origin and stratigraphic significance. Journal of the Geological Society of Korea. v.33, p.234-243 (in Korean with English abstract).
  45. Schlager, W. and Chermak, A. (1979) Sediment facies of platform-basin transition, Tongue of the Ocean, Bahamas. Society of Economic Paleontologists and Mineralogists Special Publication, 27, p.193-208.
  46. Shukla, M.K. and Sharma, A. (2018) A brief review on breccia: it's contrasting origin and diagnostic signatures. Solid Earth Sciences, v.3, p.50-59. https://doi.org/10.1016/j.sesci.2018.03.001
  47. Sibson, R.H. (1977) Fault rocks and fault mechanisms. Journal of the Geological Society of London, v.133, p.191-213. https://doi.org/10.1144/gsjgs.133.3.0191
  48. Sim, M.S. and Lee, Y.I. (2006) Sequence stratigraphy of the Middle Cambrian Daegi Formation (Korea), and its bearing on the regional stratigraphic correlation. Sedimentary Geology, v.191, p.151-169. https://doi.org/10.1016/j.sedgeo.2006.03.016
  49. Yun, S. (1978) Petrography, chemical composition, and depositional environments of the Cambro-Ordovician sedimentary sequence in the Yeonhwa I mine area, Southeastern Taebaegsan Region, Korea. Journal of the Geological Society of Korea, v.14, p.145-174.