DOI QR코드

DOI QR Code

Effect of High Frequency Heat Treatment on the Microstructure and Wear Properties of Ni based Self Fluxing Composite Coating Layer Manufactured by HVOF Spray Process

High Velocity Oxygen Fuel 공정으로 제조된 Ni 계 자용성 복합 코팅 소재의 미세조직과 마모 특성에 미치는 고주파 열처리의 영향

  • Wi, Dong-Yeol (Department of Materials Science & Engineering, Inha University) ;
  • Ham, Gi-Su (Department of Materials Science & Engineering, Inha University) ;
  • Park, Sun-Hong (Research Institute of Industrial Science & Technology) ;
  • Lee, Kee-Ahn (Department of Materials Science & Engineering, Inha University)
  • 위동열 (인하대학교 신소재공학과) ;
  • 함기수 (인하대학교 신소재공학과) ;
  • 박순홍 (포항산업과학연구원) ;
  • 이기안 (인하대학교 신소재공학과)
  • Received : 2019.10.13
  • Accepted : 2019.10.22
  • Published : 2019.10.28

Abstract

In this study, the formation, microstructure, and wear properties of Colmonoy 88 (Ni-17W-15Cr-3B-4Si wt.%) + Stellite 1 (Co-32Cr-17W wt.%) coating layers fabricated by high-velocity oxygen fuel (HVOF) spraying are investigated. Colmonoy 88 and Stellite 1 powders were mixed at a ratio of 1:0 and 5:5 vol.%. HVOF sprayed self-fluxing composite coating layers were fabricated using the mixed powder feedstocks. The microstructures and wear properties of the composite coating layers are controlled via a high-frequency heat treatment. The two coating layers are composed of ${\gamma}-Ni$, $Ni_3B$, $W_2B$, and $Cr_{23}C_6$ phases. Co peaks are detected after the addition of Stellite 1 powder. Moreover, the WCrB2 hard phase is detected in all coating layers after the high-frequency heat treatment. Porosities were changed from 0.44% (Colmonoy 88) to 3.89% (Colmonoy 88 + ST#1) as the content of Stellite 1 powder increased. And porosity is denoted as 0.3% or less by inducing high-frequency heat treatment. The wear results confirm that the wear property significantly improves after the high-frequency heat treatment, because of the presence of well-controlled defects in the coating layers. The wear surfaces of the coated layers are observed and a wear mechanism for the Ni-based self-fluxing composite coating layers is proposed.

Keywords

References

  1. L. Gil, M. H. Staia, R. Guevara, E. S. Puchi-Cabrera and D. B. Lewis: Surf. Eng., 22 (2006) 304. https://doi.org/10.1179/174329406X122900
  2. M. Rodriguez, M. Staia, L. Gil, F. Arenas and A. Scagni: Surf. Eng., 16 (2000) 415. https://doi.org/10.1179/026708400101517404
  3. J. P. Tu, M. S. Liu and Z. Y. Mao: Wear, 209 (1997) 43. https://doi.org/10.1016/S0043-1648(96)07457-1
  4. A. K. Chattopadhyay, L. Chollet and H. E. Hintermann: J. Mater. Sci., 26 (1991) 5093. https://doi.org/10.1007/BF00549897
  5. K. Gurumoorthy, M. Kamaraj, K. Parasad Rao, A. Sambasiva Rao and S. Venugopal: Mater. Sci. Eng. A, 456 (2007) 11. https://doi.org/10.1016/j.msea.2006.12.121
  6. K. Gurumoorthy, M. Kamaraj, K. Parasad Rao and S. Venugopal: J. Mater. Sci. Technol., 22 (2006) 975. https://doi.org/10.1179/174328406X100734
  7. Y. H. Shieh, J. T. Wang, H. C. Shih and S. T. Wu: Surf. Coat. Technol., 58 (1993) 73. https://doi.org/10.1016/0257-8972(93)90176-O
  8. Y. M. Jin, J. H. Cho, J. H. Ahn and K. A. Lee: Rev. Adv. Mater. Sci., 28 (2011) 48.
  9. Y. Y. Wang, C. J. Li and A. Ohmori: Thin Solid Films, 485 (2005) 141. https://doi.org/10.1016/j.tsf.2005.03.024
  10. T. S. Sidhu, R. D. Agrawal and S. Prakash: Surf. Coat. Technol., 198 (2005) 441. https://doi.org/10.1016/j.surfcoat.2004.10.056
  11. P. C. Du, X. P. Zhu, Y. Meng, H. Feng, Q. F. Wang and M. K. Lei: Surf. Coat. Technol., 309 (2017) 663. https://doi.org/10.1016/j.surfcoat.2016.11.026
  12. J. S. Yu, H. J. Kim, I. H. Oh and K. A. Lee: 19 (2012) 110. https://doi.org/10.4150/KPMI.2012.19.2.110
  13. C. Zheng, Y. Liu, J. Qin, R. Ji and S. Zhang: J. Mech. Sci. Technol., 32 (2018) 283. https://doi.org/10.1007/s12206-017-1229-3
  14. L. Gil and M. H. Staia: Thin Solid Films, 420 (2002) 446. https://doi.org/10.1016/S0040-6090(02)00815-5
  15. P. Cadenas, M. Rodriguez and M. H. Staia: Welding International, 23 (2009) 763. https://doi.org/10.1080/09507110902843313
  16. V. Stoica, R. Ahmed and T. Itsukaichi: Surf. Coat. Technol., 199 (2005) 7. https://doi.org/10.1016/j.surfcoat.2005.03.026
  17. L. Gil, M. A. Prato and M. H. Staia: Surf. Coat. Technol., 11 (2002) 95.
  18. E. J. Chun, M. S. Kim, H. Nishikawa, C. Park and J. Suh: Opt. Laser Technol., 100 (2018) 317. https://doi.org/10.1016/j.optlastec.2017.10.021
  19. S. Huang, D. Sun, D. Xi, W. Wang and H. Xu: J. Bionic Eng., 12 (2015) 592. https://doi.org/10.1016/S1672-6529(14)60149-9
  20. C. Zhang, L. Liu, H. Xu, J. Xiao, G. Zhang and H. Liao: J. Alloy. Compd., 727 (2017) 841. https://doi.org/10.1016/j.jallcom.2017.08.195
  21. S. A. A. Dilawary, A. Motallebzadeh, E. Atar and H. Cimenoglu: Tribol. Int., 127 (2018) 288. https://doi.org/10.1016/j.triboint.2018.06.022
  22. F. Fernandes, A. Ramalho, A. Loureiro, J. M. Guilemany, M. Torrell and A. Cavaleiro: Wear, 303 (2013) 591. https://doi.org/10.1016/j.wear.2013.04.012
  23. M. A. Rodriguez, L. Gil and M. H. Staia: Surf. Eng., 18 (2002) 358. https://doi.org/10.1179/026708402225006213
  24. A. Oz, R. Samur, H. mindivan, A. Demir, S. Sagiroglu and A. K. Yakut: Metalurgija, 52 (2013) 368.
  25. K. Simunovic, L. Slokar and S. Harvlisan: Pilosophical Magazine, 97 (2017) 248. https://doi.org/10.1080/14786435.2016.1257167
  26. Z. Zeng, S. Kuroda and H. Era: Surf. Coat. Technol., 204 (2009) 69. https://doi.org/10.1016/j.surfcoat.2009.06.036
  27. E. Feldshtein, M. Kardapolava and O. Dyachenko: Surf. Coat. Technol., 307 (2016) 254. https://doi.org/10.1016/j.surfcoat.2016.08.068