DOI QR코드

DOI QR Code

A NOTE ON EXPANSIVE ℤk-ACTION AND GENERATORS

  • Shah, Ekta (Department of Mathematics Faculty of Science The Maharaja Sayajirao University of Baroda)
  • 투고 : 2018.08.28
  • 심사 : 2018.11.23
  • 발행 : 2019.10.31

초록

We define the concept of a generator for a ${\mathbb{Z}}^k$-action T and show that T is expansive if and only it has a generator. Further, we prove several properties of a ${\mathbb{Z}}^k$-action including that the least upper bound of the set of expansive constants is not an expansive constant.

키워드

참고문헌

  1. N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland Mathematical Library, 52, North-Holland Publishing Co., Amsterdam, 1994.
  2. H. B. Keynes and J. B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory 3 (1969), 51-59. https://doi.org/10.1007/BF01695625
  3. D. Kim and S. Lee, Spectral decomposition of k-type nonwandering sets for $Z^2$-actions, Bull. Korean Math. Soc. 51 (2014), no. 2, 387-400. https://doi.org/10.4134/BKMS.2014.51.2.387
  4. C. Mouron, Continua that admit expansive $Z^-n+1}$ actions but not expansive $Z^n$ actions, Houston J. Math. 36 (2010), no. 1, 167-180.
  5. P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Contin. Dyn. Syst. 20 (2008), no. 4, 1039-1056. https://doi.org/10.3934/dcds.2008.20.1039
  6. S. Yu. Pilyugin and S. B. Tikhomirov, Shadowing in actions of some abelian groups, Fund. Math. 179 (2003), no. 1, 83-96. https://doi.org/10.4064/fm179-1-7
  7. R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971), 177-209. https://doi.org/10.1007/BF01418780
  8. E. H. Shi and L. Z. Zhou, The nonexistence of expansive $Z^d$ actions on graphs, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1509-1514. https://doi.org/10.1007/s10114-005-0640-3
  9. E. H. Shi, L. Z. Zhou, and Y. Zhou, A nonexistence of expansive $Z^n$ actions on Peano continua that contain no ${\theta}$-curves, Topology Appl. 154 (2007), no. 2, 462-468. https://doi.org/10.1016/j.topol.2006.06.005
  10. W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774. https://doi.org/10.2307/2031982